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Let R be the set of nonnegative matrices whose row and column sums fall between specific limits
and whose entries sum to some fixed A>0. Closely related axiomatic approaches have been
developed to ascribe meanings to the statements: the real matrix f€ R and the integer matrix
ac R are “‘proportional to” a given matrix p=0.

These approaches are described, conditions under which proportional solutions exist are
characterized, and algorithms are given for finding proportional solutions in each case.

Introduction

Regional councils in the Netherlands are composed of seats that simultaneously
represent both townships and political parties (see [1]). The stated intent is that
each township should receive a number of seats proportional to its population and
each political party a number of seats proportional to its total vote. This gives rise
to the following “matrix” problem. Suppose h >0 is the size of the council, that
pi; =0 is the number of votes for party j in township i, that r; is the number of seats
apportioned to township i, ), , = h, and that ¢; is the number of seats assigned to
party j, 2, ¢;=h. How many seats a; should be apportioned to the candidates of
party j in township i? The reflex response is, numbers proportional to the p;, but
what precisely does this mean? An axiomatic answer to this question was advanced
for a special case of this problem, the “vector” apportionment problem [4]: h>0
is the size of the council, p;=0 the population of township i (or the number of
votes of party /) and the question is how many seats a; should be apportioned to
township i (or party i). Note that solutions to the vector apportionment problem
with appropriate choices of the data p; determine respectively the r; and the ¢; for
the matrix problem.

Consider another problem (reviewed by Cox and Ernst [6]). In Canada, as well
as most countries, census data are gathered with a guarantee of anonymity. Given,
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however, arrays of many tables containing cross classifications concerning a com-
munity that is small in numbers, it may be possible to deduce the identities of certain
subjects of the population, and so fail the guarantee of anonymity. To avoid this
possibility the counts in Canada are recorded as multiples of 5. Given the row data
p; of any table, row sums r;, ), r; = h, and column sums ¢;, 3., ¢; = h, that are muitiples
of 5 (in both cases solutions to vector apportionment problems) what a;;, multiples
of 5, should replace the corresponding p; 7 Again the answer seems to be, propor-
tional numbers; again, what precisely does this mean?

Indeed, what proportionality should mean when the integer requirement is relaxed
and solutions in real numbers are sought is not clear either. In related work [3] we
have developed an axiomatic approach to both of these problems. This paper
contains a brief account of the axioms and results for defining proportionality when
solutions are required in reals and when solutions are required in integers. Its
primary objective, however, is to give algorithms for finding solutions in both cases
and to characterize when solutions exist. Section 1 concerns proportionality in reals,
and Section 2 proportionality in integers.

1. Proportional matrix allocations

1.1. Definitions

In the sequel x >0, for x a vector or matrix, means every component of x is positive,
whereas x = 0 means every component of x is nonnegative,and M ={1,...,i ..., m}
and N={1,...,j,...,n}

A problem is a pair (p, o), where p=(p;)=0is an m by n matrix containing no
row or column of zeros, and o= (r", #*, ¢, ¢, h) is a vector with r” = (r;) =0 and
r"=(r)>0 two m-vectors, ¢ =(c;)=0 and ¢"=(c¢/)>0 two n-vectors, and h a
positive scalar.

The set of allocations R(o) is

R(o)={f=(f;)=0: risfinsrl,ieM, Cj_ngjgc;a.jEN;fMN:h}

where t;; =Y, ;-

From now on, we consider only nonempty regions of allocations.

The first question is: what does it mean to say that an allocation f in R(¢o) is
proportional to p?

Two special types of problems (p, o) play key roles. If p>0 the problem is
positive. If ¥~ =r"* and ¢~ = ¢" the problem is equality constrained.

In discussing the existence of solutions several subsets of R{o) are singled out:

R’(p, o) ={fe R(0): f;=0 if p;=0},

R*(p,0)={fe R(o): ;=0 if and only if p; =0}.
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1.2. Axioms

A method of allocation F is a correspondence that assigns at least one allocation to

every problem: F(p, o) is a nonempty subset of R(o). The possibility of multiple

allocations is not excluded. For the method F to be “proportional” it should satisfy

a number of basic properties suggested by the usual (vector) idea of proportionality.
The following set of principles provides a seemingly reasonable approach.

Axiom 1 (exactness). If 8p € R(o) for some scalar 6§ >0 then F(p, o) ={8p}.

This is simply asking for the usual idea to work if some scalar multiple of p
happens to belong to the feasible set R(or).

Axiom 2 (relevance). If F(p,o)nR(6)#@ and R(6)< R(o) then F(p, &)<
F(p, o) R(&).

This is a kind of “independence of irrelevant alternatives’ property. It says that
if some of the allocations of F( p, &) (which are meant to be “proportional”) belong
to the more constrained region R(é&) then surely one can obtain no better set of
allocations F(p, &) than those: the possibilities in R(o ) — R(&) are irrelevant.

In the sequel X denotes the complement of X. Let t;,, be the submatrix of ¢
defined on rows I <M and columns J< N. Given fe F(p, o) the subproblem
(Prxs, O1xy) has the set R(o;,,) defined over rows I and columns J with lower
bounds r; —f;7 and ¢; — fy;, upper bounds r; —f;; and cj+ —~fi, and sum fy;.

Axiom 3 (uniformity). If fe F(p, o) then f;.,€ F(p;.,, 0,.;); and, conversely, if
&ixs € F(pr.;, 01,,) then for g defined to be equal to g;,; on I xJ and f elsewhere,
geF(p, o).

Uniformity is the familiar property that any part of a proportional solution must
itself be proportional, and that if a part of the problem admits another solution
then it may be substituted to obtain another solution to the whole problem. It was
first introduced in the context of the vector apportionment problem.

Axiom 4 (monotonicity). If fe F(p, o), f € F(p’, o), and p' is equal to p except
that Pri <p;d then .fkl gf;cl .

Monotonicity asks that a change in population data be accompanied only by a
reasonable change in possible allocations.
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Axiom 5 (homogeneity). Suppose (p, o) is equality constrained. If two rows of p
are proportional and are constrained to the same sum, then the corresponding rows
of any fe F(p, o) are identical (and the same holds for columns).

Homogeneity insists that two proportional population rows (or columns) whose
allocation sums must be identical should have identical row (or column) allocations,
just as is the case in ordinary vector proportionality.

In [3], we characterize a unique method satisfying the above axioms over the set
of positive problems. It will be convenient to use the following notation: if 8 is a
scalar, A = (X;), p = (u;) and p = ( p;) then 8Apu will represent the matrice (6A;p;p;).

A matrix f is said to be a fair share matrix for a problem (p, o) if

f=8App, feR(o), (1)
for some 6 >0, A >0, u > 0 satisfying:

A;>1 implies fiy=r; and A;<1 implies fix=7r7,

w;>1 implies fyy;=c¢; and ;<1 implies fy;=c; .

Intuitively one can see that a fair share matrix departs from the usual proportional
matrix only via multipliers of rows and columns, a multiplier being greater than
one (or less than one) only if it must be to meet the lower bound (or to meet the
upper bound) requirement.

We establish in [3] that a fair share matrix exists and is unique for any positive
problem. This allows the definition of the fair share method F* over the set of
positive problems and then a proof of the following:

Characterization theorem. The fair share method is the unique method of allocation
satisfying Axioms 1 through 5 over the class of positive problems. (]

1.3. Existence

It is part of the folklore that in the equality constrained problem a fair share matrix
of a positive problem is the solution of a convex program (see, for example, [2]).
We extend these results in two ways: the matrix p may have zeros and inequality
constraints replace equations.

Given p=0 denote by S the set of indices (i,j) for which p,;>0 and by S its
complement. Consider the program (where In denotes the natural logarithm)

minimize 3 x;[In(x;/py) — 1] (2)
S
subject to ry S xNy<rl, ¢ Sxp=c], Xpn=h, and
x;Z0(i,j)eS, x;=0(i,j)eS.
Here the feasible set is R°(p, o). Recall that R*(p, o) = R%(p, o) = R(0o).
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Theorem 1. A fair share matrix exists if and only if R*(p, &) is nonempty, in which
case it is the unique solution to (2).

Proof. Suppose that a fair share matrix exists. No multiplier can be null: for if
A; =0 then fiy=r/ =0, contradicting r; >0, and the same for any u; and 8. Thus
fy=08A;pyp; =0 if and only if p;=0, and fe R"(p, o).

Now suppose R*(p, o) is nonempty. Since the objective function is convex,
bounded on the feasible set and the constraints are affine, Kuhn-Tucker multipliers
exist whenever there is a feasible point in the interior of the domain of the objective
function (see [8, p. 279]). This interior is the set of x with x; >0 for (i, j)€ S, and
so the condition is satisfied precisely when R*(p, o) # (. Thus program (2) has a
minimum f and there are nonnegative multipliers (a;, «;) for row i, (8; , B;) for
column j, and a multiplier v satisfying: f minimizes the Lagrangian L over x=0
and x;=0 for (i,j)e S,

L(x7 aia a+9 ﬂ_a B+, V) :Z xij[ln(xii/pij) - 1]+Z a;[r; _xiN]
+Z a?[xiN - rT]+Z ﬁ;[c,;_xMj]
+%/3_;'+[XM,‘—C_;+]+ v(h—xpn). (3)

Also fe R(o) and the orthogonality conditions are satisfied:
a; >0 implies fix=r7, a; >0 implies fix=r, (4)

and similarly for the columns. f; > 0 for (i, j) € S since otherwise L/ dx; <0 at x; = 0.
By the first order conditions,

fl]—_—puexp{a:—af-i-ﬁ;—ﬁf‘*’V} fOr (i,j)ES,
f;=0 for (i,j)eS.

Letting A; =exp{a; ~a}, u;=exp{B; — B} and 5=exp{»} one obtains
fi=0\pyp; for all (4, ).

Moreover, if A;> 1 then necessarily a; >0 so by (4), fiv =r; , and analogously for
the other constraints. This shows that f is a fair share matrix.

It remains to prove uniqueness. Since the objective is strictly convex in the
variables x;, (i, j) € S, program (2) has a unique solution. Suppose now that fis a
fair share matrix. Then define multipliers «; and a as follows: if A;=1set a; =In A;
and o} =0, otherwise set @; =0 and af = —In A,. Define the other multipliers
similarly. Then f minimizes the Lagrangian and the orthogonality conditions are
satisfied, proving that f is the unique solution of (2). O

The natural questions that remain to be answered are: when is R*(p, o) nonempty
and what can be done if in fact it is empty?
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When the matrix p is strictly positive the answer is easy: R*(p, o) is nonempty
if and only if

ru<h<ry, cnshscy and r;<h, c¢;<h for all proper I M,J< N.

However, when the matrix p contains zeros, difficulties arise. Recall that
R*(p, )<= R°(p, o) = R(a). Necessary and sufficient conditions for R%(p, o) to
be nonempty are the following adaptation of the familiar “supply-demand” condi-
tions of network flow theory. The necessary and sufficient conditions for R%(p, o) # @
are that

=c7 and citrish<cj+rs, (5)
for any I« M, J< N with p;;=0(ry =0, etc.).

These conditions do not exclude the possibility R™(p, o) =@ as the following
equality constrained problem shows:

p=[; g:l, r=(1,1), c=(1,1).

R™(p, o) is empty because one of the inequalities (5) is satisfied as an equation:
the first inequality with I ={1} and J={1}, forcing x;; =1 and so x,, =0 whereas
P21 0.

A problem (p, o) is said to be irreducible if the inequalities (5) hold and are
satisfied strictly whenever the subsets are proper. It has been shown in [3] that
(p, o) irreducible implies R*(p, o) # §. The proof given there is embedded in the
proof of the existence of fair shares. Now that we have Theorem 1 all that needs
to be done is to show the existence of a matrix x € R%(p, o) satisfying x; >0 if and
only if p; > 0. This is easily done constructively by beginning with some y € R(o),
and if y; =0 for p;> 0, seeking a flow augmenting path from j to i in an associated
network; and repeating. If no such path exists then some inequality of (5) is satisfied
as an equation, contradicting the assumption of irreducibility.

If the conditions (5) hold for all I M and (p, o) is reducible due to subsets
I < M and J < N, with p;5 = 0then (p, o) is said to be decomposable into independent
subproblems if also pr; = 0. If, for example, c; = r; then the subproblem on (I, J)
must sum to k—cJ; and similarly if r§ = c7. If ¢7+ r;7 = h then the subproblem on
(1, J) must have an allocation summing to r; while that on (I, J) must sum to c7;
and similarly if h=c¢j+r7F.

Theorem 2. R*(p, o) is nonempty if and only if ( p, o) can be decomposed into a set
of independent irreducible subproblems.

Proof. If the condition is satisfied then R"(p, &) is nonempty. If R"(p, o) # ) then
R°(p, o) # 0 and so conditions (5) must hold. If they are all satisfied strictly then
(p, o) is irreducible. Otherwise, equality holds for some (I, J). But, then, if x¢
R™(p, o), x;;=x;7=0, implying pp=p;7=0, so (p, o) is decomposable into
independent subproblems. [
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An example of these results is the 5 by 7 problem (p, o) defined by h =32 and

X X
x X X
p=| ¢ X X

r,:(5’7’ 1’ 15 1)’ r+:(7’9)479’9)’
cr:(o’ 0’ 0’ 1’ 1’ 1’ 1)’ c+:(3’ 4, 5’ 6! 77 8, 8)’

where in p a X denotes that the corresponding p; is positive, p;;=&=0, ps, =86 =0
and blanks denote the corresponding p; =0. Consider I ={1,2} and J={1, 2,3},
with p;7=0.Then r; = c; = 12,50 R*(p, o) =P unless £ = 0. If £ = 0 then the problem
decomposes into two subproblems: the 2 by 3 problem at the northwest corner with
h =12, and the 3 by 4 problem at the southeast corner problems with 4 = 20. Consider
now only the southeast corner problem: If I=1{4, 5} and J={6,7}, then I=1{3},
20=h=rt+cj, so R'(p, 0)=¢ for this subproblem unless 8=0. Moreover,
if 8 =0 then there is a further decomposition into two subproblems. Summarizing,
the example decomposes into three independent irreducible subproblems and
R*(p, o) # @ if and only if £ =0 and §=0.

Over the set of positive problems the fair share matrix f depends continuously
on p since both the objective function and the constraints are continuous in p.
When, however, p =0 the result is no longer necessarily true. It has been shown in
[3] that the fair share matrix f is continuous over those p =0 for which R*(p, o) # 8.

If p=0,R"(p,0)=0 and R’(p, o) # @, then the unique matrix f that solves
(2) may also be obtained via continuity (see [3]). In this case some inequality
in (5) is satisfied as an equation so that any feasible solution f of (2) must satisfy
;=0 for (i,j)e(L, J)U (L J). If one is willing to accept only f;=0 if p;=0
(admitting the possibility f; =0 when p;>0), then the problem effectively decom-
poses into the two independent subproblems defined on (I,J) and (I,J) and
j”,f=0: fi7. The constraint sets corresponding to R%(p, o) are nonempty on each
subproblem, so repeating the analysis one sees that ultimately the nonzero terms
of f are fair share matrices corresponding to some collection of independent
subproblems.

When R (p,o)=0=R°p, o) but R(o)#§ it is tempting to take the same
approach and solve the program: minimize ) ¢ x;[In(x;/p;) —1] over R(o). But the
result is not satisfactory for such solutions are not continuous and indeed there is
no way to extend the definition in a continuous and unique manner, as the following
example shows. The matrix that solves the above program for the equality constrained
problem

1 0
p=|1 1 0} r=(222), c=(1,14),
1 1
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is
o 2-2a
-1+v3

@ o 22« fora = R
1-2a 1-2« 4o

However, the fair share of the matrices p(e) when & goes to zero,

1 1 ¢ |
p(e)=|1 1 e} tendto |5 3 1},
1 1 1 0 0 2

whereas the fair shares of the matrices p'(e) when & goes to zero,

11 ¢ 0 0 2
pe)=[1 1 €| tendto |1 1 0]
111 0 0 2

This shows that to have satisfactory solutions it is necessary that R’(p, o) be
nonempty.

1.4. Algorithm

The algorithm described below generalizes the well-known iterative process used
for equality problems which alternatively scales the rows and columns of p to sum
to their respective values (see, e.g., [2, 9]). The proof of convergence uses a theorem
of Zangwill and can be interpreted as a cyclic coordinate ascent method. The same
approach was used by Bigelow and Shapiro [5] for the positive equality constrained
problem.

To begin we consider the vector allocation problem (q,c¢”,¢", h), for vectors
g>0,0=c¢ <c¢" and h>0: the set of feasible allocations is {x=(x)): ¢; =x;=<
¢/, xy = h}. Its fair share vector f=(f;) is easily found: let §> 0 be such that

o(8)=Y mid(c;, 8q;, ¢;)=h
N

and

c; =8g;<c/ for atleast one je N,
where mid(x, y, z) =y if x=<y =z Such a value 8 exists if and only if cx<h=cX
and ¢, < h for all proper J = N. To see this note that ¢(8) is continuous in 8, and
that o(0) = ¢y whereas (8) = ¢ for & large. Therefore there exist values & satisfying

o(8)=h. There is a § > 0, for otherwise, ¢, = h for some proper J = N. Appropriate
multipliers and fair shares are then defined by

w;=mid(c;, 8q;, ¢;)/8q; and f;=8uyq;.
So

u;>1 implies f;=c; and pu,<1 implies fi=c;.
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The algorithm given below is based on the solutions of such vector allocation
problems. The proof of its convergence requires, however, that min w; <1< max u;.
This is easily met. Suppose that § >0 and o(8)=h with (u;) the corresponding
multipliers. If 8¢; is between ¢; and ¢, for some j then w;=1 and the required
condition obtains. Otherwise, 8 may be increased or decreased without changing
the values of ¢(8) until either 8q; =c¢; or 8q;=c; for some j and so again y; = 1.
Thus, in the following, it is assumed that the multipliers of solutions to vector
allocation problems are chosen to satisfy this property.

The allocation algorithm is simply a sequence of solutions to vector allocation
problems:
Step 0. A]=1=p} all i and j.
Step (2k+1). Compute the fair share vector of (¥, pyu;*), r~, r*, h). Let 8>
and A**"' be multipliers and set ,uzk“ nk
Step (2k+2). Compute the fair share vector of (¥, A7*"'p;), ¢7, ¢, h). Let 52
and p**"* be multipliers and set A°*?= A",

Let f*=6A"pu” be the matrix associated with Step k. The sum of its entries for
k=1 is always h. If k is odd, f* satisfies the row constraints, whereas if k is even
it satisfies the column constraints.

Theorem 3. Let (p, o) be a positive problem with R*(p, o) # 0. Then the multipliers
of the algorithm converge to some (8, A, u) and f= 8Apu is the fair share matrix of
the problem.

Proof. The idea of the proof is very natural (see, for example, [7, pp. 121-125]).
Think of the algorithm as a point to set mapping ¢ that takes a trial solution x* € X
into some (not necessarily unique) successor x**' e ¢ (x*) = X. ¢ is assumed to be
“closed”: If for x*e X, x* > x and y*e ¢(x*), y* >y, then ye ¢(x). In addition,
suppose H is a continuous function on X and X* < X is a ““solution set” satisfying
for any ye ¢(x): H(x)< H(y) if x¢ X* and H(x)< H(y) if xe X*. Then, if X is
compact, Zangwill’s theorem asserts that the limit of any convergent subsequence
is a solution.
Take for H the (dual objective) function

H(a",a",B,B", V)=%(afr —air; )+Z(B, T—B/c))
+vh— Y pyexpla; —a; +B; —Bi tv}

fora =0,a"=0,87=0,8"=0. If B~ and B are fixed, compute the fair share
of the problem ((X, p; exp{B; —~B/}),r ,#"). If & and A are the corresponding
multipliers define v, @« and o™ as follows:
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a; =IlpA; and af =0, if A;>1,
a;=0and af =-Ink;, ifA =<1,
v=1Iné.

It is easy to check that for these values (where «; is a; or «}),
dH/da;=0 or dH/da;<0 and «;=0, oH/ov=0.

Thus, since H is concave, H is maximized with respect to @ =0, @ =0 and v, for
B~ and B fixed. The same holds if @« and a " are fixed and H is maximized over
B =0,B8" =0 and v, so this is a cyclic coordinate ascent method.

The algorithm is closed. Consider an odd step, and suppose that a sequence A*
converges to A and that the associated multipliers (8°, u*) converge to (8, u). We
must show that (8, u) could be chosen by the algorithm when the multipliers are
A. The argument is simple. Since all the formula for determining (8°, u*) are
continuous in A* and there are only a finite number of inequalities ¢; <8 ¥, Aip; <
¢/, one of these must be satisfied infinitely often so that the multipliers A must
admit (8, u) as a solution.

Finally, the sequence of points (8% A* u*) is bounded. p>0 and
Y aren 8 AT pyu s =h implies

8 max Af max uf<B for some B and any k. (6)
M N
Since max,, A¥=1, max, u; =1 it follows that 8*< B, so 6" is bounded.

Take k to be odd. Suppose I = {i: r; >0} is empty; then A ¥ > 1 implies 2 6kp,-j,u,j'-‘ =
r; =0, which is impossible. Thus, A¥=<1 obtains for all i and A* is bounded. So
suppose I #§. From ), Sk)\f«‘p,-j,u}‘ = r; for i e I it may be deduced that there is some
b> 0 satisfying A% max ,U,;‘B bforiel or

8 min Af max uf=b for some b and any odd k. (7)
I N

Dividing (6) by (7) yields max; A¥ < (B/b) min; A% for k odd. Therefore, if min; A§ <
1 then A¥= B/b for all i so A is bounded.

If, on the other hand, min; Af>1 then I# M and ¥, 8*A¥ p;uf=r7. But for
ie I we know A¥=<1 since r; =0 so

h=Y 8\ipsul+Y s"Alpul<ri+ Y 8p,maxpul.
IN IxXN N

IxN
R*(p, o) # ¢ implies r; < h so
8 max uf=(h—r7)/pin=0">0.
N
Now use (6) to deduce maxa; A¥< B/b’. Thus, in all cases A* is bounded for k odd

and since (for k odd) A**'=A* it is bounded for all k. A similar argument shows
n* is bounded for all k. [
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We conjecture that the same algorithm works for p=0 when R¥(p, o) #0 and
also that if R*(p, ¢)=0 and R°(p, o) #( the f* of the algorithm converge to the
unique solution f€ R% p, o) that minimizes the objective function of (2).

2. Proportional matrix apportionments

2.1. Definitions and axioms

A problem is a pair ( p, o) where p and o are defined as before except that the data
o are assumed to be integer. The set of apportionments of a problem (p, o) is
composed of the integer valued allocations of R(o). Since R{o) is nonempty and
o is integer valued, the set of apportionments is nonempty.

A method of apportionment A is a correspondence that assigns at least one
apportionment to every problem: A(p, o) is a nonempty subset of R(o). For the
method A to be “proportional” it should satisfy a number of basic properties. They
are essentially the same as those postulated for allocations, but in one case a property
is formulated which is deduced from the fair share method.

Axiom 1' (exactness). If f=F*(p o) is integer in all components, then

A(p, o) ={f}.

If the unique fair share allocation f happens to be integer valued then it must be
the unique apportionment.

Axiom 2’ (relevance). If A(p, o)~ R(4)#@ and R(G)< R(o) then A(p, &)=
A(p, o) R(&).

This is almost the same “independence of irrelevant alternatives” property as that
imposed on allocations F.

Axiom 3’ (uniformity). If a € A(p, o) then the same statements hold as do in Axiom
3 with A replacing F and a replacing f.

Again, “any part of a fair apportionment should be fair”.

Axiom 4’ (monotonicity). If a€ A(p, o), a’ € A(p’, o) and p' is equal to p except
that p,, < py; then ay < aj,.

If f=F%p o) let I ={ieM:fx=r},I"={ieM:fx=r{} and I’°=
{ie M: r; <fin<r7}, and define J,J", J® analogously. Then it is evident from the
theorem characterizing fair share allocations that if §>0, @ =(a;) >0, B=(8;)>0
are reals satisfying a;>1 for ie I, a;<1 for ieI” and o;=1 for ieI° (and
analogously for B8), then fe F*(8apB, o). One cannot hope for anything less when
looking for integer apportionments. Accordingly, given a € A( p, o) define the corre-
sponding partitions M=I"uI*UI’and N=J"uJ U J°
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Axiom 5’ (homogeneity). If ac A(p, o) and § >0, @>0 and B >0 are such that
a;>1 implies ieI" and a;<1 implies ie I,
Bi>1 implies jeJ" and B;<1 implies jeJ ,

then a € A(dapB, o).

Intuitively one would expect small changes in p to leave the apportionment a
unchanged. For example, if one population increases and another decreases then
presumably no change of apportionment occurs until a point p* is reached when
any further change does cause a change in apportionment. Arbitrarily small changes
around p* can then produce different apportionments. At p* all these apportionments
should be admissible. Thus:

Axiom 6’ (completeness). If p* > p when s tends to infinity and ac A(p’, o) for
every s, then ac A(p, o).

The Axioms 1’ through 6’ are consistent and characterize a class of methods of
apportionment called divisor methods. The characterization is proved in [3]; our
objective here is to describe the class of divisor methods and for this several
definitions are necessary.

A divisor function is a strictly monotone real function d defined on all nonnegative
integers, satisfying a=<d(a)<a+1 and d(b)/(b+1)<d(a)/a for all a=1 and
b=0. A d-rounding of the real number x>0 is defined by

[x]g=a ifda—1)sx=<d(a),

and [0];,=0. So a d-rounding is unique unless x=d(a), in which case [x],; =
[d(a)],; = a or a+1 and there is a tie. In effect, d(a) e [a, a+1]is a threshold below
which x is rounded down, above which x is rounded up.

An apportionment matrix a@ belongs to the divisor method A based on d for a
problem (p, o) if

a= (aij) = ([B)tipii,u«j]d), acR(o),

for some & >0, A >0, u > 0 satisfying:

A >1 implies a;ny=r; and A;<1 implies a;n=r7,

w;>1 implies ap;=c¢; and u;<1 implies ay;=c; . (8)

The set of all divisor method apportionments takes on the role of the fair share
method: the integer requirement introduces a multiplicity in the choice of method.
Moreover, a single divisor method may admit several apportionments because of ties.

Note that if d(0) =0 then the d-rounding of any positive quantity is at least one,
so if ae A(p, o) then p; >0 implies a;=1. Thus, a necessary condition for the
existence of apportionments is that

R'(p, o) ={fe R%p, o): p;> 0 implies a,;=1}
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be nonempty. Accordingly a problem is said to be strongly positive if p>0 and
R'(p, o) #0. We prove in [3]:

Characterization theorem. A method of apportionment satisfies Axioms 1’ through 6'
over the set of strongly positive problems if and only if it is a divisor method. It satisfies
them over the set of positive problems if and only if it is a divisor method A with
d0)>0. O

2.2. Existence and algorithm

There are several well-known examples of divisor methods that have been used or
proposed for apportioning seats in legislatures among regions or political parties
[4]. The method of Adams, used in France in 1986 to apportion the Assemblée
Nationale among the departments, has d(a)= a. The method of Webster, used for
many years to apportion seats of the House of Representatives in the United States,
and also popular in the Scandinavian countries, has d(a)=a+ 5. The method of
Jefferson, also known as that of d’Hondt and frequently used for apportioning seats
among political parties in P.R. systems, such as within departments in the French
elections of 1986, has d(a)=a+1.

Theorem 4. Let d be a divisor function. If d(0)>0, A*(p, o) is nonempty if and only
if R%(p, o) is nonempty. If d(0) =0, A’(p, o) is nonempty if and only if R'(p, &) is
nonempty.

Proof. The existence of divisor method apportionments is proved constructively by
an algorithm that either provides an A“ apportionment or shows that R°(p, o) or
R'(p, o), depending upon the d in hand, is empty.
Divisor method algorithm. At each step it is assumed that a trial solution (8, A, u, a)

is in hand that satisfies the following conditions:

§>0,A>0,u>0;

A;>1 implies a;y<r; and A,<1 implies a;n=c};

w;>1 implies ay;<c¢; and ;<1 implies ay;=c; . 9)

The aim of the algorithm is to produce a matrix a that belongs to R(&) because,
in the presence of conditions (9), this implies that a is an A%-apportionment. Given
a trial solution a, define I ={ieM:an<r;},I"={ieM:an>r} and J,J"
similarly. The error of the trial solution is defined to be the nonnegative integer

;(r?—aiN)+Z+ (aiN-rT)'*'JZ (C;—aMi)'*'Z.r (an_C;r)-

If the error is zero, an apportionment is in hand. If not, at most m + n of the steps
described below produce a new trial solution whose error is smalier by at least 1.
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(hh)

Diagram 1. Circulation network.

The underlying idea comes from the out-of-kilter algorithm: A labelling procedure
identifies a change in trial solution that maintains the conditions (9) and strictly
decreases the error within a finite number of steps.

An initial choice of trial solution that verifies conditions (9) is A; = ;=1 for all
i,j and &> 0 chosen so that a,; = k. This is clearly possible if d(0) # 0. In the case
d(0) =0 the number of nonzero p;’s cannot be greater than h, else R'(p, o) would
be empty, so a § >0 can be found. Consider the bipartite network with node set
M u N, and arcs (i,j), with ie M and je N, if and only if p;>0. Add a source
called N and arcs (N, i), i € M, with lower and upper capacities equal respectively
to r; and r; . Similarly, add a sink called M and arcs (j, M) with lower and upper
capacities respectively equal to ¢; and ¢, . Finally, add arc (M, N) with lower and
upper capacity equal to h. Let & represent the set of all arcs. A trial solution is a
(usually nonfeasible) circulation in this network.

There are several cases that may occur in the algorithm: We describe only the
case where the step begins because I~ # (). The other cases are treated analogously.

Case I #¢. Declare each arc (N,i),ie I, to be a forward arc. Recursively
define “labelled” sets of nodes I and J (and perhaps the node M) until either node
N is labelled or no further labelling is possible, as follows:

0) I'c1L

(1) IfielLjeJ, (i,j)e o and f;=d(ay;) then jeJ and is labelled with {i}, and
(i,7) is declared a forward arc. If ie I, and either a;n>ri, or A, =1 and a;x>r;
then label N with {i} and declare (N, i) to be a backward arc.

(2) Ifjed,igL (i,j)e oA, fy=d(a;—1) and a;=1 then i€ I and is labelled with
{7}, and (i, j) is declared a backward arc. If j € J and either an; <c; , or u;=1 and
an; < c; then label M with {j}, and declare (j, M) to be a forward arc.

(3) If M is labelled, j# J and either ay;>c;, or u;=1 and au;>¢; then jeJ
and is labelled with {M} and (j, M) is declared a backward arc.
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Labelling terminates in one of three possibilities: (i) N is labelled, (ii) neither N
nor M are labelled, or (iii) N is not labelled but M is.

(i) N is labelled. Then the path indicated by following the labels beginning with
the label of N goes to some i€ I~ and identifies with (N, i) a cycle along which
the flow in every forward arc may be increased by 1 and along every backward arc
decreased by 1 to obtain a new circulation a’ satisfying (9) with error decreased by
at least 1.

(ii) Neither N nor M are labelled. Then the following must hold:

if ielI and a;y>r;, then A; <1, (10)
and
if jeJ and ay;<c/, then u;>1. (11)

Condition (10) holds because a;5 > r; implies that A; <1 by (9), but since N is not
labelled and i is labelled A; # 1, so A; < 1. Condition (11) holds for a similar reason.
Let

ey=min{d(ay)/f;:ieLjeJ, (i, j)e A},
82:m1n{f;]/d(al]_1) lg I’JG‘,’ (la.])e &Q}’
es=min{l/A;:icl an> 17}, es=min{u;: j€J, ap; <},

unless ¢; is undefined in which case it is taken to be . Thus, & > 1 in each case
and so £ =min; ¢;> 1. If ¢ is finite define the new trial solution by:

8'=8;
AMi=¢eA;, foriel A=A, else;
wi=u;/e forjel, wj=pu,;, else;
a=a

The effect of this change is pictured in Diagram 2. The choice of ¢ guarantees that
the properties (9) remains satisfied. To see this first note that a; =[f}], for any
(i, j) where f;=8Aipyu}. If (i,) is in I xJ or I xJ this holds because f};=f;. If
(i,j)isin I xJ we have f};= efythus d(a; — 1) <f; < fli< e f;< d(ay) and a; = [ f}]4.
A similar argument applies to (i,j) in I xJ by using £,= . As for the constraints

J J
I fi=1; fi=1; Als up by factor > 1
T fhi<t; fi=r; A; unchanged
wis down  u’s unchanged
by factor ¢

Diagram 2. Changes when neither M nor N labelled. a’'=a.
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on the multipliers note that the only change in row multipliers is for i € I. One must
only assure that if ajy>r; then A;=<1, which is guaranteed by g;=¢e. A similar
argument applies to the columns since £, &. Moreover, at the next step all labels
may be kept and further labelling must take place. ¢ = €; means some new column
j# J will be labelled, ¢ = ¢, that some new row i g I will be labelled, £ = &; that N
will be labelled and & = ¢, that M will be labelled.

Suppose, however, that ¢ is not finite. Then the condition of Diagram 3 obtains
(including the possibilities I =@ or J =0). &, not finite means p; =0 for (i, j)e I xJ
or J=¢. In either case J is not empty. &, not finite means d(a;~1)=0 so either
a;=0 or a;=1 and d(0)=0 for (i,j)e I xJ, or I =0. &; not finite means a;y<r;
for i€ I &, not finite means ay; = ¢; for je .

J J
1 ;=0 <r; where for (i, j)e T x J,
, d(0)#0 implies a;; =0,
I|a;=0o0r1 d(0) =0 implies a; =0 if p;, =0,
=1if p,;>0.
=zcf

Diagram 3. £ =00, M and N not labelled.

Consider the case d(0)#0. Since I < L a;n<ry, 80 ¢y <ay;=da;=a;n<ry
where J ={je N: p;> 0 for some i € I}, showing the conditions (5) are violated and
there is no feasible solution in R%(p, o).

If d(0)=0 then a;=1 for every p,;>0 is an added constraint. We know that
ap = ey, where ex; ={the number of p;>0:(jj)e KxL}. Thus, T =<ay, =
ay+ag=ay+ep=an+ep <r;+ep. But there can be no fe R'(p, o): any feas-
ible f must satisfy fix=1r; and f;3=0, so f,=r,, and f;; = e;;. Therefore fy, =
fu—+fo=r7+ep>c; for any feasible £ violating the upper bound constraints on
columns J.

(iii) M is labelled and N is not. Then (10) and the following obtain:

if jeJ and ay;>¢;, then p;<1. (12)

Let €, &, and &; be defined as above, e, =min{1/u;: j€ J, ay; > ¢; } and £ =min, g, >
1. If ¢ is finite define the new trial solution by

8'=8/¢;
Ai=gA; foriel Ai=A;, else;
wi=eu; forjel, wi=u,;, else;
a=a

The situation is depicted in Diagram 4.

As before the properties (9) remain satisfied. The next step all labels may be kept
and further labelling must take place.
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J J
5 down 1 =t W=t A’s up by factor £>1
by
factor ¢ 1 L<ti h=1 A; unchanged
pjs unchanged s up by
factor ¢
Diagram 4. Changes when M labelled, N not.
J J
I p;=0 <r7  where for (i,j)e I xJ,
, d(0)#0 implies a;; =0,
I|a;=0or1 d(0)=0 implies a; =0if p,; =0,
— =1if p;>0.

Diagram 5. £ =00, M labelled, N not labelled.

Suppose ¢ is not finite. Then the condition of Diagram 5 obtains (including the
possibilities T =@ or J=0). If d(0) # 0 deduce h < r; +c7, violating conditions (5)
and showing R%(p,o)=0. If d(0)=0 deduce that r;+c7>h—e;, showing
R'(p, o) =9.

Observe, in summary, that after at most m+ n steps either a case (i) must occur
and so a decrease in the integer error measure or the problem is found to have no
feasible solution. Thus, the algorithm converges in a finite number of steps. Of
course, we have only described what to do when I~ # @, where the steps are motivated
by the desire to increase the values of A; for ie I, If I"#@, a similar procedure
works where the motivation is to decrease the values of A; for ie I". The “transpose”
procedure works for J~ and J*. This completes the justification of the algorithm,
and so proves the theorem. [

As a byproduct the algorithm proves the following,

Corollary. R°(p, o) if and only if the conditions (5) hold. R'(p, o) # 0 if and
only if

n _
Cy—ep=ry, r

|
]
bl
Vv
o
~I

and
citritep<h<cj+ri—eyp,
forany I< M,J< N with p;5=0. O
This algorithm, persuasive as an existence theorem, leaves something to be desired

as a method for finding solutions in practice. A “good” initial solution needs to be
specified, presumably one that begins with the fair share allocation f
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Whereas the set of allocations or proportional solutions in reals F*(p, o) is
unique, the set of apportionments or proportional solutions in integers admits any
divisor method solution A“(p, o). What d should be chosen? The answer depends
on the particular application. If it is desirable that over many problems (p, o) with
o fixed the average of the a; be equal to the average of the f; for each i,j (that
there be “no bias” in apportionments), then there is reason to believe that the
method of Webster, d(a)=a+3%, should be used. This is suggested by results
concerning vector apportionment [4] and has been confirmed by some limited
computational trials. It would be a reasonable approach to apportioning seats.

The data of census rounding problems, satisfies >, p;=r,%, py=¢ and X r,;=
Y. ¢; = h. A sensible rounding procedure is to first solve the associated vector rounding
problems (r, h) and (¢, h), then solve the matrix rounding problem. The current
approach to solving the equivalent problem of rounding to integers is to compute
the associated quotas p;=p;h/pun, i =%; Py, G=2X,py, then find an (integer)
apportionment a satisfying | p;| < a;=< [p;], |F] <an<[F], &l <ar;<[&] and
ayn = h, that minimizes the distance from the quotas for some measure of distance.
([x] = least integer greater than or equal to x. |x] = greatest integer less than or
equal to x.) This is not a “proportional” idea: it is akin to using the method of
Hamilton in vector apportionment, which admits unfortunate behaviour. The reason
for this is simply that rounding large numbers p;; (or 7, ¢;) up or down to the nearest
integers is, from the “proportional” perspective, more restrictive than rounding
small numbers up or down to the nearest integers. But understanding the impact
of this observation on actual problems awaits computation.
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