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1   The formal framework 

 

There are given H units of some good, where H is a positive real number.  The units are to be 

distributed among a number of entities.
1
 

 The entities are characterized by two attributes.  Therefore, they can be arranged in a 

two-dimensional matrix.  Let I and J be the number of rows and columns in the matrix.  

Hence there are a total of I  J entities competing for the H units of the good.  The variables i 

and j vary over the sets M = {1, 2, ... I} and N = {1, 2, ... J}, respectively. 

 There are given positive real numbers pi,j.  They represent the entities' claims on a share 

of the H units of the good.  As far as possible the distribution should be proportional to the 

numbers pi,j. 

 Row and column sums in the pi,j-matrix, and the sum of all entries in the matrix, are 

denoted as follows: 

 pi,N = jN pi,j 

 pM,j = iM pi,j 

 pM,N = iM,jN pi,j 

Similar notation is used for other indexed variables. 

 It is convenient to normalize the numbers pi,j by defining 

 qi,j = pi,j  H / pM,N for all i and j 

Then qM,N = H. 

 Let ai,j denote the amount of the good allocated to entity (i, j).  These must be non-

negative numbers satisfying aM,N = H.  The ai,j-matrix is called an allocation.  For now, there 

is no requirement that ai,j be an integer. 

 Perfect proportionality can be achieved by letting ai,j = qi,j.  If there are no further 

constraints, this is the obvious solution to the problem. 

 Further restrictions are imposed.  There are given positive numbers ri for i  M and sj 
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1.   The word "Entity" (usually with a capital initial) has a special meaning in Bosnia and Herzegovina; see the 

first paragraph of Section 2.  Here "entity" is used in a different and more general sense.  Hopefully, this will not 

cause confusion. 



PROPORTIONALITY IN TWO DIMENSIONS 
 

  2 

for j  N satisfying rM = iM ri = H and sN = jN sj = H.  It is required that the allocation 

satisfy (1) and (2): 

 (1) ai,N = ri for all i 

 (2) aM,j = sj for all j 

There will always exist allocations satisfying these constraints.  One possibility is ai,j = 

ri  sj / H, but this could be far from proportional to pi,j. 

 The task is to find an allocation, that is, a non-negative ai,j-matrix, which as far as 

possible is proportional to pi,j, given that (1) and (2) must be satisfied.  Conditions (1) and (2) 

have absolute priority over the criterion of proportionality.  That is, one is not permitted to 

make the slightest deviation from (1) or (2) even if this could significantly improve the 

proportionality between ai,j and pi,j. 

 It may be impossible to find an allocation which is "fair" or "reasonable" in all relevant 

respects.  Assume, for example, that an allocation is proposed in which, for some values of 

the variables i, j, and j', ai,j < ai,j' although pi,j > pi,j'.  That is, within row i of the matrix, entity 

(i, j) has a stronger claim on the good than (i, j'), but nevertheless (i, j) receives less than 

(i, j').  This seems unfair, and one might be tempted immediately to reject the proposed 

allocation, but such a reaction would be unjustified.  It is possible that no allocation satisfying 

the constraints is free from this type of unfairness (or a similar type relating to entities in the 

same column). 

 In many interesting cases the units of the good are indivisible, so each entity must 

receive a whole number of units.  The number of units given to entity (i, j) is in this case 

denoted hi,j.  It plays the same role as ai,j did earlier, but hi,j must be a non-negative integer.  

This is referred to as the discrete case, as opposed to the continuous case previously 

discussed, where the good is assumed to be perfectly divisible.  In the discrete case, the units 

of the good are usually called seats, since this corresponds to many important applications, 

included the one presented in Section 2 and discussed in later sections.  Of course, the 

theoretical discussion is independent of the nature of the good to be distributed, except that it 

makes a difference whether it is divisible or not. 

 The hi,j-matrix is called an apportionment.  It must satisfy analogous versions of (1) and 

(2): 

 (3) hi,N = ri for all i 

 (4) hM,j = sj for all j 

This is only possible when ri and sj are integers.  Then H must also be an integer.
2
 

 The discrete case is more restrictive than the continuous one.  Therefore, it may all the 

more be impossible to find an apportionment which is "fair" or "reasonable" in all relevant 

respects. 

 The data of the problem are the numbers I, J, H, pi,j, ri, and sj. 

 Clearly, I and J must be positive integers.  If I = 1, the problem is not really two-

dimensional, and the solution is determined by (2) or (4).  Hence nothing is lost by assuming 

I  2.  Similarly, J  2 can be assumed. 

 By assumption, H, pi,j, ri, and sj are positive numbers. 

                                                 

2.   When ri, sj, and H are positive integers satisfying rM = sN = H, there will exist apportionments satisfying (3) 

and (4).  The proof of this has limited interest and is omitted. 
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 The solution is given by the numbers ai,j or hi,j.  They are required to be non-negative, 

but it is not a priori assumed that they are strictly positive.  The solution to the continuous 

problem, given in Section 5, has ai,j > 0 for all i and j, but that is a conclusion, not an 

assumption.  In the discrete case, the possibility hi,j = 0 for some i and j cannot be ruled out.  

If H < IJ, some hi,j must necessarily be zero. 

 The theoretical discussion in Sections 5 and 7 is based on two articles by M. L. Balinski 

and G. Demange: 

[1]  "An axiomatic approach to proportionality between matrices", Mathematics of Operations 

Research 14 (1989), 700-719. 

[2]  "Algorithms for proportional matrices in reals and integers", Mathematical Programming 

45 (1989), 193-210. 

 

 

2   The application 

 

The Federation of Bosnia and Herzegovina is one of the two Entities that make up the 

internationally recognized state Bosnia and Herzegovina.  The other Entity is the Republika 

Srpska. 

 The Parliament of the Federation consists of two houses.  Only one of these, the House 

of Peoples, is of interest here.  The goods to be distributed are the seats in the House of 

Peoples, of which there are a total of 80.  Hence H = 80. 

 The Federation is geographically divided into ten Cantons.
3
  The population of the 

Federation consists of three Constituent Peoples, Bosniacs, Croats, and Others.  This defines 

the two-dimensional structure of the problem. 

 A Constituent People in a Canton is called a group.  They correspond to the "entities" of 

the general discussion in Section 1.  There are a total of 30 groups. 

 For indexed variable like pi,j etc., the first index refers to the Cantons, which are 

identified by their official numbers.  The second index is used for Constituent People, with j = 

1 for Bosniacs, j = 2 for Croats, and j = 3 for Others.  Hence I = 10 and J = 3. 

 The Draft Election Law Article 12.3 second paragraph mandates that the 1991 Census 

be the basis for distributing the seats in the House of Peoples among the Constituent Peoples 

within each Canton.  Therefore, the numbers pi,j are the population of the groups according to 

the 1991 Census. 

 Table 1 contains the population, according to the 1991 Census, of the Cantons, the 

Constituent Peoples, and the groups.  Table 2 shows the "normalized population", that is, the 

numbers qi,j. 

 The problem is obviously of the discrete type.  A solution is an apportionment, that is, 

an hi,j-matrix of non-negative integers, where hi,j is the number of seats given to Constituent 

People j in Canton i. 

 The Draft Election Law contains, in Article 12.3 first paragraph, a procedure for 

distributing the seats in the House of Peoples among the Cantons.  The idea is that the 80 

                                                 

3.   The Brčko District is ignored.  Presumably, the citizens of the Federation in the Brčko District should, for 

the present purpose, be included in one of the Cantons and be given an opportunity to influence the election to 

the House of Peoples from that Canton. 
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seats shall be distributed proportionally among the Cantons based on recent voter registration 

figures, but each Canton shall be guaranteed at least three seats.  This determines the numbers 

ri.  The next-to-last column of Table 2 contains the numbers ri on which the computations in 

Sections 3 – 7 are based.
4
 

 Moreover, the Draft Election Law specifies, in Article 12.3 third paragraph, the number 

of seats in the House of Peoples for each Constituent People.  This determines the numbers sj. 

 They are shown in the next-to-last row of Table 2.
5
 

 It is obvious from Table 2 that the row and column sums of the qi,j-matrix are 

significantly different from ri and sj.  Therefore, even if the problem had been of the 

continuous type, considerable deviations from proportionality would have had to be accepted. 

 In addition comes the restrictions caused by the discrete nature of the problem. 

 In part, the deviations are caused by the fact that different principles are applied when 

ri, sj, and hi,j are determined.  The numbers ri are the result of proportional distribution, but 

based on different data than the ones that shall be used to determine hi,j.  The numbers sj are 

specified in the law.  It is likely that better proportionality between hi,j and pi,j could have been 

achieved if the same principle had been used in all cases.  The only practical possibility would 

be to determine ri and sj by proportional distribution based on the 1991 Census.
6
  The last 

column and the last row of Table 2 contain the results of distributing seats among Canton and 

Constituent Peoples on this basis.
7
  These numbers play no role in the subsequent 

computations. 

 

 

3   A simple and straightforward solutions 

 

The following appears to be a natural and straightforward solution to the discrete problem:  

Choose one of the well-known and commonly accepted methods of proportional 

representation.  Distribute the seats among the entities (groups) according to this method, 

taking account of the constraints (3) and (4). 

 For some methods, like the method of the largest remainder, it is not clear what it means 

to "take account of" certain constraints when distributing the seats.  Any attempt to make this 

                                                 

4.   In fact, the procedure of Article 12.3 first paragraph is inconsistent.  The underlying idea can, for example, 

be realized by using a constrained version of the odd numbers method of proportional representation.  This 

procedure gives the numbers ri of Table 2. 

5.   The law contains an additional restriction on the apportionment:  A Constituent People that is represented by 

at least one member in a Cantonal Assembly, shall have at least one seat in the House of Peoples from that 

Canton.  This rule is ignored in the computations below.  The results of the Cantonal Assembly elections must 

be known before it can be applied. 

6.   More recent data, such as voter registration figures, do not contain information about Constituent Peoples 

and can therefore not play the role of pi,j. 

7.   The numbers sj
* are the result of a straightforward proportional distribution.  They are different from qM,j 

only because they must be integers.  The ri
*-vector is determined by a procedure of constrained proportional 

distribution, where each Canton is guaranteed at least three seats.  Therefore, ri
* is not really proportional to qi,N, 

but the proportionality is better than that between ri and qi,N. 
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precise creates new difficulties or leads to paradoxical results, which must in turn be taken 

care of.  It may be possible to find a satisfactory solution, but it must necessarily be quite 

complicated.
8
 

 The class of divisor methods is characterized by the seats being handed out one by one 

in a definite order.  Then it is easy to take account of the constraints (3) and (4).  If the 

awarding of a seat according to the divisor method will lead to a Canton getting more seats 

than permitted by (3), or a Constituent People getting more seats than permitted by (4), this 

seat is simply omitted, and one goes on to the next seat.  An apportionment satisfying the 

constraints will eventually be found. 

 One specific divisor method, the odd numbers method, is used here.
9
  It has the property 

of being neutral in relation to big and small entities, that is, on the average it does not favors 

the big ones compared to the small ones, nor vice versa.
10

  It is also the divisor method which 

is closest to the method of the largest remainder.  In particular, the two methods coincide 

when seats are distributed between only two entities. 

 To sum up, the following procedure is used:  The point of departure is the numbers pi,j, 

that is, the groups' population according to the 1991 Census.  (Since normalized population is 

proportional to population, qi,j might as well have been used as the point of departure.)  Seats 

are distributed on this basis by the odd numbers method.  If the awarding of a seat to a group 

would lead to the corresponding Canton getting more seats than permitted by (3), or the 

corresponding Constituent People getting more seats than permitted by (4), this seat is 

ignored and one proceeds to the next seat in the order determined by the odd numbers 

method. 

 The distribution is documented in Tables 3 and 4.  The groups are identified with a 

letter for the Constituent People and a number for the Canton.  For example, group C 7 

consists of the Croats (Constituent People 2) in Canton 7.  In the notation previously 

introduced, this is entity (7, 2). 

 Table 3 consists of three parts, one for each Constituent People.  For each group the 

table shows the population pi,j and the quotient obtained by dividing it by 1, 3, 5, and so on.  It 

is indicated which seat, if any, is won on the basis of a quotient.  The table contains the 

quotients that are used for distributing seats, and at least one more for each group. 

 Table 4 shows the awarding of the seats one by one.  The columns "G", "P", and "C" 

contain the number of seats hitherto won by the group, the Constituent People, and the 

Canton, respectively. 

 When the 56th seat has been handed out, Constituent People 1 (Bosniacs) has gotten the 

number of seats to which it is entitled by condition (4).  A couple of more seats can be 

awarded before the constraint really becomes binding.  Up to and including the 58th seats the 

odd numbers method can be applied without modifications.  However, quotients no. 59 cannot 

                                                 

8.   The reason is that the method is vulnerable to the so-called "Alabama paradox":  If the total number of seats 

to be distributed is increased, everything else being kept constant, some entities can get fewer seats than before.  

The method is described and an example of the paradox is given in the Appendix. 

9.   The method is described in the Appendix. 

10.   In order to make this statement precise, the probability distribution over which the average is taken must be 

specified.  The issue is not discussed further. 
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be used to award a seat.  The same is true for several subsequent quotients.  These quotients 

are included in Table 4, and in Table 3 they are marked with a number in brackets.  For 

example, the seventh quotient for group B 4 is marked "(61)" to indicate that it lies between 

the quotients on the basis of which the 60th and the 61st seat were won. 

 The 79th quotient is used to hand out the 68th seat.  Then Constituent People 3 (Others) 

has also gotten the number of seats to which it is entitled by condition (4).  Therefore, the 

remaining twelve seats must all be given to Constituent People 2 (Croats).  The distribution of 

these seats among the Cantons follows from condition (3).
11

  Hence the final apportionment is 

determined, and further computing and comparing of quotients is pointless. 

 Table 5 shows the distribution of the 68 first seats, and Table 6 gives the final 

apportionment. 

 Although this procedure may seem natural, there are serious problems with it.  The 

distribution of the last seats is determined solely by conditions (3) and (4), with no reference 

to population or proportionality.  In the specific example, this is the case for as many as 

twelve seats.
12

  Tables 5 and 6 show that group C 5 gets two seats, none of them won in the 

ordinary way on the basis of quotients.  The group has a tiny population; see Table 1.  If one 

looks at the Constituent Peoples within Canton 5, it is unsatisfactory that a distribution which 

pretends to be proportional, should give group C 5 two out of three seats.  A similar argument 

can be made concerning the relationship between the groups C 1 – C 10 within Constituent 

People 2 (Croats).  As pointed out in Section 1, unreasonable results of this type cannot in 

general be avoided, but it must be possible to find a better apportionment than that of Table 6. 

 

 

4   Normalization by Canton or by Constituent People 

 

Table 2 shows that the row and column sums of the qi,j-matrix differ significantly from ri and 

sj.  Therefore, it is not surprising that proportional distribution based on pi,j or qi,j soon leads to 

some of the constraints (3) and (4) becoming binding, after which strange things can happen.  

In the example, condition (4) plays a more important role than (3); see Table 4 and the 

description in Section 3. 

 Can the problem be solved, at least in part, by scaling the numbers qi,j of each row up or 

down so that they get the "correct" sum, or by doing the same for the columns?  Both 

possibilities will be considered. 

 Concerning the rows, this idea is realized by defining, for all i and j: 

 (5) qi,j
C
 = pi,j  ri / pi,N 

Note that pi,N is the total population of Canton i.  The definition implies 

 qi,N
C
 = ri for all i 

Therefore, the numbers qi,j
C
 are exactly the result of scaling qi,j up or down so that the sum of 

row i equals ri.  This process could be called "normalization by Canton"; hence the 

                                                 

11.   Cantons 8 and 10 have already gotten the seats to which they are entitled by condition (3). 

12.   When I – 1 of the equalities (3) or J – 1 of the equalities (4) are satisfied, the rest of the allocation is 

determined by the constraints.  This must hold when H – 1 seats have been handed out, but the example shows 

that it can happen much earlier. 
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superscript C. 

 The qi,j
C
-matrix is shown in Table 7.  The row sums equal ri, but the column sums 

deviate from sj. 

 The seats can be distributed by the method described in Section 3, with the point of 

departure being qi,j
C
 instead of pi,j or qi,j. 

 In this case, 59 seats are distributed without the divisor method having to be modified, 

and 69 seats are distributed before it becomes pointless to compute more quotients.
13

  That is, 

the latter part of the procedure, where everything is determined by (3) and (4), involves eleven 

seats.  The final apportionment is shown in Table 8. 

 Instead of adjusting each row in the qi,j-matrix so that the row sums equal ri, one can 

treat the columns in a similar manner.  This is achieved by defining, for each i and j: 

 (6) qi,j
P
 = pi,j  sj / pM,j 

Here pM,j is the total population of Constituent People j.  The definition implies 

 qM,j
P
 = sj for all j 

This process could be called "normalization by Constituent People"; hence the superscript P.  

The numbers qi,j
P
 are shown in Table 9.  Apart from an unimportant round-off error, the 

column sums equal sj, but the row sums deviate from ri. 

 Table 10 gives the result of basing the apportionment on qi,j
P
.  In this case, 63 seats are 

distributed without the divisor method having to be modified, and 77 seats are handed out 

before it becomes pointless to compute more quotients.
14

  Hence only three seats are involved 

in the part of the process where everything is determined by (3) and (4). 

 From a theoretical point of view, both procedures considered here must be considered 

more satisfactory than the one presented in Section 3.  Which of the two is the better one? 

 In general, one would expect that proportionality is best achieved if the constraints 

become binding late in the process and few seats are distributed solely on the basis of the 

constraints.  In the example, normalization by Constituent People works better than 

normalization by Canton by this criterion.  In addition, it is condition (4) that actually 

becomes binding in the original distribution of Section 3, which seems to indicate that there is 

more to gain by normalization by Constituent People than by normalization by Canton. 

 On the other hand, the apportionment of Table 8 intuitively appears more proportional 

to population than that of Table 10.
15

 

                                                 

13.   Detailed information about the distribution, corresponding to Tables 3 – 6, is available, but is not included 

here.  —  When the 58th seat has been handed out, Canton 5 has gotten the number of seats to which it is 

entitled by condition (3).  Similarly, when the 59th seat has been awarded, Constituent People 1 (Bosniacs) has 

gotten the number of seats to which it is entitled by condition (4).  The 60th quotient also belongs to a Bosniac 

group and can therefore not be used to distribute a seat.  The 76th quotient is used to hand out the 69th seat.  

Then four of the ten Cantons and two of the three Constituent Peoples have gotten the number of seats to which 

they are entitled. 

14.   Again, information corresponding to Tables 3 – 6 is available but not included here.  —  When the 42nd 

seat has been awarded, Canton 10 has gotten the number of seats to which it is entitled by condition (3).  

Nevertheless, the odd numbers method can be applied without modifications up to and including the 63rd seat.  

The 86th quotient is used to hand out the 77th seat.  Then eight Cantons and two Constituent Peoples have 

gotten the number of seats to which they are entitled. 

15.   In particular, normalization by Canton leaves group C 5 without any seat, which is certainly the reasonable 

(continues…) 
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 All in all, there do not seem to be strong reasons for preferring normalizing by Canton 

to normalizing by Constituent People, or vice versa. 

 Is it possible to do better than both these alternatives, by in a sense normalizing along 

both dimensions?  The answer is yes, as explained in Sections 5 and 6. 

 

 

5   The continuous case 

 

Although the problem presented in Section 2 is of the discrete type, it is convenient to return 

to the continuous case, described in Section 1. 

 The following statement is a consequence of [1] Theorem 1 (page 704):
16

 

 

 There exist positive numbers , i, and j so that (1) and (2) are satisfied when ai,j 

is defined by 

 (7) ai,j = ijpi,j 

 Moreover, the numbers ai,j are uniquely determined by the requirement that they 

be of the form (7) and satisfy (1) and (2). 

 

The numbers , i, and j are not uniquely determined.  For example, nothing changes if  is 

multiplied by a positive constant and each i, or each j, is divided by the same constant.
17

 

 It is convenient to choose  equal to the "normalization factor" H / pM,N.  Then (7) 

becomes: 

 (8) ai,j = ijqi,j 

Even here i and j are not unique. 

 In [1], the theorem is proved by a fixed-point argument.
18

 

 The ai,j-matrix is obtained by scaling the rows and columns of the qi,j-matrix up or down 

to the extent necessary to satisfy (1) and (2).  Apart from this, ai,j is equal to qi,j.  Therefore, it 

can reasonably be claimed that the numbers ai,j, given by (7) or (8), are the solution to the 

                                                                                                                                                                                     

(…continued) 

outcome, while normalization by Constituent People gives this group two seats, as did the procedure of Section 

3.  —  Tables 6 and 10 are almost equal.  Groups O 3 and C 6 get one seat more in Table 10 than in Table 6, 

while C 3 and O 6 get one seat less.  These are the only differences.  The two apportionments are as close as 

they can be when they are not identical.  It is easy to prove that if two apportionments satisfying (3) and (4) are 

not equal, they must differ for at least four entities. 

16.   In the most general formulation of [1], the equality constraints (1) and (2) are replaced by upper and lower 

bounds on ai,N and aM,j.  It is not required that all the numbers pi,j be strictly positive, although they must all be 

non-negative, and there cannot be any row or column in the pi,j-matrix consisting entirely of zeros.  These 

generalizations make things more complicated and are not considered here. 

17.   As the statement is formulated, it is required that , i, and j be strictly positive.  Actually, it is sufficient 

to assume that they are non-negative.  It can then be proved that they are strictly positive.  Suppose, for example, 

that i = 0 for some i.  Then (7) implies ai,j = 0 for this i and all j.  Therefore, (1) gives ri = ai,N = 0, contradicting 

the assumption that ri is strictly positive. 

18.   The algorithm outlined below can also serve as a proof of the statement. 
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continuous problem.  They are as far as possible proportional to qi,j, and hence to pi,j, only 

with the deviations necessary to satisfy (1) and (2).
19

  They represent "normalizing along both 

dimensions"; see the question asked at the end of Section 4. 

 The numbers ai,j can be computed by an iteration algorithm; see [2] Section 1.4.  A 

sketch of the algorithm is given here:
20

 

 The computation is carried out in stages, starting with stage 0.  The variable k is used to 

denote the stages.  Hence k = 0, 1, 2, ... .  At stage k, positive real numbers i
(k)

 and j
(k)

 are 

computed and qi,j
(k)

 is defined by: 

 (9) qi,j
(k)

 = i
(k)
j

(k)
qi,j 

The goal is to have the qi,j
(k)

-matrix satisfy analogies of (1) and (2), that is 

 (10) qi,N
(k)

 = ri for all i 

 (11) qM,j
(k)

 = sj for all j 

In general, this will never be achieved exactly.  It is necessary to keep track of the aggregate 

deviation from (10) and (11) at each stage.  This motivates the following definitions: 

 1
(k)

 = iM │qi,N
(k)

 – ri│ 

 2
(k)

 = jN │qM,j
(k)

 – sj│ 

The total error at stage k is given by 
(k)

 = 1
(k)

 + 2
(k)

. 

 Initially, i
(0)

 = j
(0)

 = 1, which gives qi,j
(0)

 = qi,j.  Neither (10) nor (11) can be expected 

to hold. 

 If k > 0 is an odd integer, qi,j
(k)

 is computed from qi,j
(k–1)

 by a procedure of 

"normalization by row", in analogy with (5).  This is achieved by defining: 

 i
(k)

 = ri / jN j
(k–1)

qi,j 

 j
(k)

 = j
(k–1)

 

When qi,j
(k)

 is defined by (9), (10) holds.  That is, 1
(k)

 = 0, which implies 
(k)

 = 2
(k)

.  In 

general, 
(k)

 > 0. 

 If k > 0 is even, qi,j
(k)

 is computed from qi,j
(k–1)

 by "normalization by column", in analogy 

with (6).  This amounts to defining: 

 i
(k)

 = i
(k–1)

 

 j
(k)

 = sj / iM i
(k–1)

qi,j 

When qi,j
(k)

 is again defined by (9), (11) holds and 2
(k)

 = 0.  Then 
(k)

 = 1
(k)

, which generally 

is positive. 

 It can be proved that the procedure converges.  In particular, lim k 
(k)

 = 0.  Let 

 i = lim k i
(k)

 

 j = lim k j
(k)

 

 ai,j = lim k qi,j
(k)

 = ijqi,j 

Then the numbers ai,j are of the form (8) and satisfy (1) and (2). 

 Of course, it is impossible to complete infinitely many stages of the algorithm.  In 

                                                 

19.   Moreover, the procedure described here is the only solution to the continuous problem that satisfies a set of 

reasonable axioms; see [1] Theorem 2 (page 705). 

20.   The algorithm of [2] is designed to take care of the general case considered in [1]; see note 16.  Here it has 

been simplified to fit the problem considered. 
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practice, it is terminated when 
(k–1)

 + 
(k)

 <  for some predetermined (small) number  > 0.  It 

is necessary to use the sum of the errors at two consecutive stages in order to get non-trivial 

cases of deviation from both (10) and (11).
21

  The result is given by ai,j = qi,j
(k)

, i = i
(k)

, and 

j = j
(k)

, for the k at which the computation stops. 

 The results of applying this procedure to the example are given in Table 11.
22

  The ai,j-

matrix is shown, as well as the numbers i and j.  The latter are denoted i
c
 and j

c
, where 

the superscript c indicates that this is the continuous case.  They give an impression of how 

the rows and columns of the qi,j-matrix are scaled up or down to get the ai,j-matrix.  Therefore, 

i
c
 and j

c
 can be said to determine the two-dimensional normalization. 

 

 

6   Apportionment based on the continuous allocation 

 

Although the continuous problem is now solved, the discrete one is not.  The numbers ai,j of 

Table 11 are not integers and cannot directly be used to distribute the seats in the House of 

Peoples, but they can serve as a basis for the computation. 

 The seats can be distributed by the method described in Section 3, with the point of 

departure being ai,j instead of pi,j or qi,j. 

 The distribution is documented in Tables 12 and 13.  They contain information similar 

to that of Tables 3 and 4; see the description of these tables in Section 3. 

 In this case, it is possible to distribute 78 of the 80 seats on the basis of the largest 

quotients, without any Canton or Constituent People getting more seats than permitted by (3) 

or (4).  That is, up to and including the 78th seats the odd numbers method can be applied 

without modifications.  However, quotients nos. 79 – 82 cannot be used to distribute seats. 

 The 83rd quotient is used to hand out the 79th seat.  The final apportionment is now 

determined, and further computing and comparing of quotients is pointless.  It follows from 

(3) that the 80th seat must be given to Canton 2, and it follows from (4) that it must be given 

to Constituent People 3 (Others).
23

  Table 14 shows the distribution of the 79 first seats, and 

Table 15 gives the final apportionment.
24

 

 

                                                 

21.   The convergence seems to be fairly rapid.  The computation in the example was carried out in a few 

seconds on a desk-top computer.  The chosen value of  was 10–12. 

22.   The numbers are given to an accuracy of four digits after the decimal point, but the computation has been 

carried out with higher accuracy.  Compared to ri and sj there seems to be a deviation of 0.0001 in some of the 

row and column sums.  This is due to accumulation of round-off errors when the numbers are rounded to four 

digits. 

23.   If one goes on computing quotients, it will last until the 134th quotient before the last seat is awarded. 

24.   After 78 seats have been awarded, the constraints permit only two possibilities.  The two remaining seats 

must be given to groups B 6 and O 2, as actually happened, or to groups B 2 and O 6.  —  If 80 seats are 

distributed by the odd numbers method, Canton 1 will get one seat more and Canton 6 one seat less than 

prescribed by (3), and Constituent People 2 (Croats) will get one seat more and Constituent People 3 (Others) 

one seat less than prescribed by (4).  These are the only deviations from (3) and (4). 
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7   Direct solution of the discrete case – theory 

 

The method presented in Section 6 seems reasonable, and in the example it gives an 

intuitively acceptable result.  It is reassuring that as many as 78 of the 80 seats are distributed 

without the divisor method having to be modified. 

 It does not follow that all problems are solved. 

 There will always be a phase where everything is determined by the constraints.  In the 

example, this only involves one seat, but the number could easily be higher.  Perhaps it is 

more relevant to concentrate on the seats that are not handed out by the unmodified divisor 

method.  In the example, there are two such seats.  When these seats are awarded, one can say 

that the method of proportional distribution has lost control and the constraints have taken 

over.  This creates a danger of unreasonable results.
25

  As pointed out in Section 1, it may be 

impossible to find an apportionment which is "reasonable" in all relevant respects, but still it 

seems unsatisfactory that the same principles cannot be applied during the whole process of 

distribution.  There are reasons to suspect that the final apportionment could deviates more 

from proportionality than necessary to satisfy the constraints (3) and (4) and the requirement 

that each hi,j be a non-negative integer. 

 In Section 5, the rows and columns of the qi,j-matrix are adjusted so as to obtain the row 

and column sums prescribed by (1) and (2).  This form of adjustment is well suited for the 

continuous problem. 

 In the discrete case, however, another type of adjustment seems more appropriate, 

namely the following:  Adjust the rows and columns in such a way that, when the adjusted 

numbers are used to distribute H seats by the odd numbers method, the apportionment 

satisfies (3) and (4).  During the distribution of the H seats, the odd numbers method shall be 

applied without modifications, although ties may be broken in the way most favorable to the 

fulfillment of (3) and (4).  The initial adjustment of the qi,j-matrix shall guarantee that the 

constraints can be satisfied. 

 Is it possible to make such adjustments?  The answer is yes.  The following is a 

consequence of [1] Theorem 5 (page 712):
26

 

 

 There exist positive real numbers , i, and j with the following property:  Let bi,j 

be defined by 

 (12) bi,j = ijqi,j 

 Distribute H seats according to the odd numbers method on the basis of bi,j.  Then 

the apportionment, or at least one of the possible apportionments in case of a tie, 

satisfies (3) and (4). 

 

                                                 

25.   In the example, the procedure of Section 3 gives two seats to the tiny group C 5, as does normalization by 

Constituent People as described in Section 4.  Although nothing like this happens for the procedure of Section 6, 

one cannot a priori rule out the possibility of similar effects. 

26.   A similar statement holds for each divisor method in the class described in note 39.  For reasons explained 

in Section 3, the odd numbers method is preferred here. 
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The use of qi,j instead of pi,j in (12) is a matter of convenience and makes no difference, since 

the distribution is unaffected by the numbers bi,j being multiplied by a common, positive 

factor.  For example,  can be chosen so that bM,N = H.  The numbers bi,j are usually not 

unique, not even up to a common factor.  The apportionment is, however, essentially unique.  

It is unique except possibly when ties occur in the application of the odd numbers method.
27

 

 In general, it is not possible to choose , i, and j in (12) so that the bi,j-matrix is an 

allocation satisfying (1) and (2). 

 For a real number x > 0, the symbol [x]½ is used to denote a set which contains one or 

two integers.  If x = k + ½ for an integer k, [x]½ = {k, k+1}.  Otherwise, [x]½ has one element, 

namely the result of rounding x up or down to the nearest integer.  In any case, k  [x]½ if and 

only if k is an integer and k – ½  x  k + ½.
28

 

 General properties of the odd numbers method imply that the apportionment given by 

(12) can also be characterized as follows:
29

 

 

 There exist positive real numbers , i, and j and non-negative integers hi,j with 

the following property:  When bi,j is defined by bi,j = ijqi,j, then 

 (13) hi,j  [bi,j]½ 

 for all i and j, and the hi,j-matrix is an apportionment satisfying (3) and (4). 

 

The apportionment is essentially unique.  A necessary, but not sufficient, condition for it not 

being unique, is that some of the sets [bi,j]½ contain two elements, that is, some of the numbers 

bi,j lie midway between two integers.
30

 

 Only the relative size of the numbers bi,j plays a role in (12), but in (13) their absolute 

size is of importance.  Any parameters , i, and j that can be used in (13), can also be used 

in (12), but not vice versa.  It is not necessarily possible to have bM,N = H in (13).  The 

parameter  is superfluous in (13) as well as in (12); it can, for example, be incorporated into 

i. 

                                                 

27.   The potential non-uniqueness is unavoidable.  In practice, however, the probability that the apportionment 

is unique, is very close to 1.  See further discussion in note 30. 

28.   The definition also makes sense when x  0, but that case has no interest in the present connection.  A 

generalization of the definition is given in the Appendix, note 39. 

29.   This is the formulation used in [1].  –  The equivalence of the characterizations given by (12) and (13) 

follows from the argument used in the Appendix to prove that the odd numbers method can be characterized by 

(A3). 

30.   To be precise, the following can be proved (see [1] Lemmas 2 and 5):  Let two apportionments satisfying 

(3) and (4) be given by hi,j and hi,j', and assume that they both are of the form (13).  That is, there exist positive 

numbers , i, j, bi,j, ', i', j', and bi,j' such that bi,j = ijqi,j, bi,j' = 'i'j'qi,j, hi,j  [bi,j]½, and hi,j'  [bi,j']½ 

for all i and j.  Suppose hi,j  hi,j' for some i and j.  Then bi,j = bi,j'.  This is only possible if ¦hi,j – hi,j'¦ = 1 and 

bi,j = bi,j' lies midway between hi,j and hi,j'.  —  If the apportionments given by hi,j and hi,j' are not equal, the 

constraints imply that they must differ for at least four entities.  That is, at least four of the numbers bi,j must be 

of the form k + ½ for an integer k.  Although , i and j are endogenous, this is essentially impossible when the 

original data, pi,j, are naturally generated.  —  The one-dimensional, and therefore considerably simpler, version 

of this uniqueness result is stated and proved in note 38. 
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 The existence of an apportionment of the form (12) or (13) is proved in [2] Section 2.2. 

 The proof is constructive, that is, an algorithm for computing the apportionment is presented. 

 It is fairly complicated.  An outline is given here.
31

 

 The algorithm starts with an apportionment which is of the form (13) and distributes the 

correct number of seats.  That is, there are given positive real numbers , i, and j and non-

negative integers hi,j so that (13) holds for bi,j = ijqi,j, and hM,N = H.  In general, (3) and 

(4) are not satisfied.  Any apportionment which is of the form (13) and satisfies hM,N = H can 

be used as a starting point, but it is an advantage that it comes as close as possible to fulfilling 

(3) and (4). 

 It seems convenient to use the numbers ai,j, i, and j computed in Section 5 as the point 

of departure.  Let hi,j be the result of distributing H seats by the odd numbers method on the 

basis of ai,j.  Then there exists a number  > 0 such that hi,j  [ai,j]½ for all i and j.
32

  Let 

bi,j = ai,j, so that 

 (14) hi,j  [bi,j]½ 

By (8), bi,j = ijqi,j.  Hence an apportionment of the form (13) satisfying hM,N = H has been 

found.
33

 

 The total deviations from (3) and (4), respectively, are measured as follows: 

 E1 = iM │hi,N – ri│ 

 E2 = jN │hM,j – sj│ 

Since hM,N = H = rM = sN, E1 and E2 are even integers.  They are obviously non-negative.  All 

equalities in (3) are satisfied if and only if E1 = 0, and all equalities in (4) are satisfied if and 

only if E2 = 0. 

 If E1 = E2 = 0, a solution has been found and the computation is completed.  Assume 

E1 > 0.  (The case of E2 > 0 is similar.)  Since hM,N = H = rM, there must be deviations from (3) 

in both directions.  Choose i and i' such that hi,N < ri and hi',N > ri'.  Then it seems reasonable to 

increase i and decrease i', or at least increase i / i', in order to increase hi,N and decrease 

hi',N.  This is the general idea of the algorithm.  It is not quite as simple, however.  One must 

also take account of the columns.  Even if an adjustment of the hi,j-matrix brings hi,N closer to 

ri and hi',N closer to ri', so that E1 decreases, little is gained if new or more severe deviations 

from (4) emerge, so that E2 increases. 

 The computation is carried out in steps.  At any point in time, numbers , i, j, bi,j, and 

                                                 

31.   The problem considered in [2] is more general than the one discussed here.  First, there are the 

generalizations mentioned in note 16.  Second, other divisor methods than the odd numbers method can be used. 

 The outline of the algorithm in the main text is simplified and adopted to the special case considered.  –  In [1] 

Theorem 6 (page 713) a characterization result is presented, somewhat analogous to the one mentioned in note 

19.  In this case, however, the axioms are not satisfied by only one procedure, but by one procedure for each 

divisor method in the class described in note 39. 

32.   See the discussion of (A3) in the Appendix. 

33.   For the example, the relevant data are given in Table 11.  The result of distributing H = 80 seats by the odd 

numbers method on the basis of ai,j can be found from Table 13.  The deviations from (3) and (4) are mentioned 

in note 24.  The 80th quotient is 0.5076 > ½ and the 81st quotient is 0.4942 < ½.  Hence  can be chosen equal 

to 1.  The method of the largest remainder gives the same result as the odd numbers method in this case.  These 

claims follow from arguments made in the Appendix. 
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hi,j are given.  Here , i, j, and bi,j are positive real number, hi,j is a non-negative integer, 

bi,j = ijqi,j, and hi,j  [bi,j]½. 

 Each step starts with a process in which certain rows and columns are labeled, while 

certain entities are marked, either positively or negatively: 

(a) If hi,N < ri, then row i is labeled. 

(b) If row i is labeled and column j is not, and bi,j = hi,j + ½, then column j is labeled, and 

entity (i, j) is positively marked. 

(c) If column j is labeled and row i is not, and bi,j = hi,j – ½ (which is possible only if hi,j  

1), then row i is labeled, and entity (i, j) is negatively marked. 

This process is repeated until no further labeling is possible.  Two cases are distinguished: 

(i) There exists no i such that row i is labeled and hi,N > ri. 

(ii) There exists an i such that row i is labeled and hi,N > ri. 

In case (i), some of the numbers i and j, and hence some bi,j = ijqi,j, are changed, but 

all hi,j are kept constant.  In case (ii), some of the numbers hi,j are changed but all bi,j are kept 

constant.  In both cases, hi,j  [bi,j]½ shall remain true for all i and j. 

 Case (i) is considered first.  Assume, therefore, that the labeling process is terminated 

without any row i with hi,N > ri having been labeled. 

 Let A1 be the set of entities (i, j) such that i is labeled and j is not labeled, and let A2 be 

the set of entities (i, j) such that j is labeled, i is not labeled, and hi,j  1.  It is obvious that A1 

and A2 are disjoint.  Suppose they are both empty.  Since E1 > 0, there exist i and i' such that 

hi,N < ri and hi',N > ri'.  Row i is labeled by (a) of the labeling process.  Row i' is not labeled; 

otherwise, case (ii) would apply.  Since A1 is empty and i is labeled, all columns are labeled.  

Since A2 is empty and i' is not labeled, hi',j = 0 for all j, implying hi',N = 0, which contradicts 

hi',N > ri'.  Therefore, the assumption that A1 and A2 are both empty, must be wrong. 

 For each (i, j)  A1, define i,j = (hi,j+½) / bi,j.  Since hi,j  [bi,j]½, bi,j  hi,j + ½.  If bi,j = 

hi,j + ½, (i, j)  A1 would contradict (b) of the labeling process.  Since bi,j > 0, this gives i,j > 

1.  For each (i, j)  A2, define i,j = bi,j / (hi,j–½).  The definition of A2 implies hi,j  1, which 

gives hi,j – ½ > 0.  Since hi,j  [bi,j]½, bi,j  hi,j – ½.  If bi,j = hi,j – ½, (i, j)  A2 would contradict 

(c) of the labeling process.  Therefore, i,j > 1 in this case as well.  Because A1 and A2 are 

disjoint, no number i,j has been given two definitions.  Let  be the smallest of the numbers 

i,j for (i, j)  A1  A2.  Since A1 and A2 are not both empty, this is well defined and  > 1. 

 Let i' =   i if i is labeled, i' = i if i is not labeled, j' = j /  if j is labeled, and j' = 

j if j is not labeled.  Then define bi,j' = i'j'qi,j.  If both i and j are labeled or none of them 

is, then bi,j' = bi,j; if i is labeled and j is not, then bi,j' > bi,j; and if j is labeled and i is not, then 

bi,j' < bi,j.  If entity (i, j) is marked, row i and column j are both labeled, and bi,j' = bi,j.  The 

choice of  guarantees hi,j  [bi,j']½ for all i and j. 

 Now a new step is started, with bi,j' substituted for bi,j.  The labeling process will 

resemble, but not be equal to, that of the previous step.  Every row or column that was labeled 

last time, is labeled again.  In addition, at least one more row or column is labeled.  If  = i,j 

for (i, j)  A1, column j was not labeled at the previous step, but is labeled now.  If  = i,j for 

(i, j)  A2, the same holds for row i. 

 After a finite number of steps where case (i) applies, case (ii) will apply.  At the latest 

this will happen after I + J steps, since all rows and columns must then be labeled. 

 Then consider case (ii).  The assumption E1 > 0, (a) of the labeling process, and the case 

assumption, imply the existence of labeled rows i and i' so that hi,N < ri and hi',N > ri'.  By 
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following the labeling backwards from i', it is possible to find an integer k  2 and rows i1, i2, 

... , ik and columns j1, j2, ... , jk–1 such that i1 = i, ik = i', and: 

– Rows i1, i2, ... , ik are labeled. 

– Columns j1, j2, ... , jk–1 are labeled. 

– Entities (i1, j1), (i2, j2), ... , (ik–1, jk–1) are positively marked. 

– Entities (i2, j1), (i3, j2), ... , (ik, jk–1) are negatively marked. 

Modify the hi,j-matrix by giving one more seat to each of the k – 1 entities (i1, j1), (i2, j2), ... , 

and (ik–1, jk–1) and taking one seat away from each of (i2, j1), (i3, j2), ... , and (ik, jk–1).  By the 

conditions for an entity being positively or negatively marked, this is possible, and hi,j  [bi,j]½ 

still holds.  In the hi,j-matrix, every column sum remains unchanged.  The same is true for the 

row sums, except for rows i and i'.  Moreover, hi,N is increased and hi',N is decreased.  Hence 

E1 is decreased and E2 is unchanged. 

 If E1 is still positive, the procedure is repeated.  The labeling and marking process will 

now be different, but after a finite number of steps at which case (i) applies, case (ii) will 

again apply, and E1 is further decreased.  After a finite number of steps, E1 = 0 and (3) is 

satisfied for all i. 

 If E2 > 0, the procedure is started over again with rows and columns interchanged.  At 

this stage, the row sums do not change and E1 = 0 remains true.  After a finite number of 

steps, E2 = 0, and a solution satisfying (3) and (4) has been found. 

 

 

8   Direct solution of the discrete case – application 

 

The result of applying this algorithm of Section 7 to the example is documented in Tables 16 

and 17.  The final apportionment, computed by the algorithm, is given in Table 17.  The 

numbers in Table 16 are not, however, those that come out of the algorithm.  Instead, they are 

chosen so that they are close to the numbers ai,j of Table 11. 

 Previous statements about uniqueness imply the following:
34

  Let bi,j = ijqi,j for 

positive real numbers , i, and j, and assume that hi,j is the unique result of rounding bi,j up 

or down to the nearest integer.  That is, no hi,j lies midway between two integers.  If the hi,j-

matrix is an apportionment satisfying (3) or (4), it is the unique solution to the problem. 

 The real numbers bi,j of Table 16 are of the required form, and they relate to the integers 

hi,j of Table 17 in the correct way.  Hence they prove that the solution has been found.  In this 

case,  = 1, while i and j are given in the last column and the last row, respectively, of 

Table 16.  They are denoted i
d
 and j

d
, where the superscript d indicates that this is the 

discrete case.  They give an impression of how the rows and columns of the qi,j-matrix are 

scaled up or down to get the bi,j-matrix.
35

 

                                                 

34.   See, in particular, note 30. 

35.   Compared to Table 11, 1 is decreased so as to bring entry (1, 1) slightly below 5.5, and 6 is increased so 

as to bring entry (6, 1) slightly above 2.5, implying that these entries will be rounded to 5 and 3, respectively.  

Similarly, 2 is decreased and 3 increased to get entry (7, 2) below 5.5 and entry (7, 3) above 1.5, so that the 

entries are rounded to 5 and 2.  The reduction in 2 has brought entry (2, 2) below 2.5, and this must be 

compensated by an increase in 2.  No further adjustments are necessary.  That is, 1
d = 1

c, and i
d = i

c except 

for i = 1, 2, and 6. 
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9   Summary 

 

Table 18 summarizes the apportionments obtained by the five methods considered in Sections 

3 – 8. 

 A reasonable measure of the distance between the apportionments given by hi,j and hi,j' 

is ½iM,jN │hi,j – hi,j'│.  Table 19 gives the distance, measured in this way, between any two 

of the five apportionments. 
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Appendix:  The relationship between the odd numbers method and the method of the 

largest remainder 

 

Summary  The odd numbers method and the method of the largest remainder are described. 

 An example of the Alabama paradox is given. 

 The relationship between the two methods is investigated.  Let d
+
 be the smallest 

fractional part which is rounded upwards, and let d
–
 be the largest fractional part which is 

rounded downwards, when seats are distributed by the method of the largest remainder.  The 

following three cases are exhaustive and mutually exclusive: 

(a) d
–
 > ½ 

(b) d
–
  ½  d

+
 

(c) d
+
 < ½ 

In case (b), the two methods are equal.  In case (a), they may be equal, but if they are 

different, the odd numbers method is most favorable to small entities.  In case (c), any 

difference must go in the direction of the odd numbers method being most favorable to large 

entities. 

 

Introduction  The contents of this appendix is a digression compared to the discussion above.  

Here only one-dimensional discrete problems are considered.  Therefore, the notation is 

somewhat different.  When definitions are equal, they are repeated, so as to make the 

appendix self contained. 

 There are given H units of some indivisible good.  They are to be distributed among I 

entities.  Both H and I are positive integers.  Everything is trivial if I = 1; hence I  2 is 

assumed.  The variable i varies over the sets M = {1, 2, ... I}. 

 There are given positive real numbers pi.  They represent the entities' claims on a share 

of the H units of the good.  As far as possible the distribution should be proportional to the 

numbers pi.  Let 

 pM = iM pi 

Similar notation is used for other indexed variables. 

 It is convenient to normalize the numbers pi by defining 

 qi = pi  H / pM for all i 

Then qM = H.  Below, the distribution is based on qi rather than pi.  This never makes any 

difference for the distribution as such, but it is essential for some of the statements made. 

 The most important applications of the theory deal with the distribution of seats in 

elected assemblies among geographical areas, political parties, or other groups.  Hence the 

units of the indivisible good are usually called seats.  The entities are the geographical areas, 

the parties, or the groups.  The number pi could, for example, be the population of 

geographical unit i, or the number of votes cast for party i at an election. 

 Let hi denote the number of seats given to entity i.  These must be non-negative integers 

satisfying hM = iM hi = H.  The hi-vector is called an apportionment. 

 For a real number x > 0, x denotes the largest integer less than or equal to x.  That is, 

x is x rounded downwards to the nearest integer.  The symbol [x]½ is used to denote a set 

which contains one or two integers.  If x = k + ½ for an integer k, [x]½ = {k, k+1}.  Otherwise, 

[x]½ has one element, namely the result of rounding x up or down to the nearest integer.  In 

any case, k  [x]½ if and only if k is an integer and k – ½  x  k + ½. 
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The odd numbers method  Each qi is divided by the odd numbers, 1, 3,, 5, and so on, as far as 

necessary for distributing the H seats.
36

  For given i, the quotients obviously form a 

decreasing series.  All the quotients, regardless of the entity to which they belong, are ordered 

by size.  (If several quotients are equal, they shall of course occupy the corresponding number 

of places in the ordering.)  The entity to which the largest quotient belongs, is awarded the 

first seat, the second largest quotient is used to hand out the second seat, and so on until all 

the H seats are distributed.  Ties are broken arbitrarily. 

 Let c
+
 be the smallest quotient for which a seat is won, and let c

–
 be the largest quotient 

for which no seat is won.  That is, c
+
 and c

–
 are quotients nos. H and H + 1, respectively.  

Clearly, c
+
  c

–
 > 0.  Unless there is a tie for the last seat, c

+
 > c

–
. 

 Entity i competes for its seat no. k on the basis of the quotient obtained by dividing qi by 

2k – 1.  When the apportionment is given by the integers hi, the description of the procedure 

implies 

 (A1) qi / (2hi–1)  c
+
  c

–
  qi / (2hi+1) 

for all i.  It is always possible to find a number  > 0 such that c
+
  ½  c

–
.  Then (A1) 

gives 

  qi / (2hi–1)  c
+
  ½  c

–
  qi / (2hi+1) 

This implies 

 (A2) hi – ½  qi  hi + ½ 

That is, when the hi-vector is an apportionment obtained by the odd numbers method, there 

exists a number  > 0 such that, for all i 

 (A3) hi  [qi]½ 

Conversely, suppose that the non-negative integers hi and the positive real number  satisfy 

(A3), and assume hM = H.  It makes no difference whether seats are distributed on the basis of 

qi or qi.  When the latter numbers are used, it is easy to see that application of the odd 

numbers method can give the apportionment hi.  Any quotient greater than ½ gives a seat; a 

quotients equal to ½, if there are any, may or may not give a seat; and a quotient less than ½ 

does not give a seat. 

 It has now been proved that the set of possible apportionments according to the odd 

numbers method is equal to the set of hi-vectors that are of the form (A3) and satisfy hM =  H. 

 This holds both when this set has one element, and when it has two or more elements.  In the 

former case, there is not a tie for the last seats, and c
+
 > c

–
.  Then there is an interval of 

possible values of .
37

  For any possible value of , at most one of the numbers qi lies 

midway between two integers, that is, at most one of the sets [qi]½ contains two elements.  In 

                                                 

36.   The distribution is not changed if all divisors are multiplied by the same positive constant.  Therefore, the 

odd numbers method could also be presented as the divisor methods with divisors 0.5, 1.5, 2.5, and so on, that 

is, divisor no. k is k – ½.  (In this case, the name "the odd numbers method" would not make much sense.  The 

name "the method of major fractions" is sometimes used.  It is inspired by the characterization (A3), presented 

below in the main text.) 

37.   The argument leading from (A1) to (A2) requires that c+  ½  c–, which is equivalent to 1/(2c+)    

1/(2c–).  Any  in this interval can be used in (A3).  It is easy to prove that the converse also holds:  If the hi-

vector satisfies (A3) and  < 1/(2c+), then hM < H; if (A3) is satisfied and  > 1/(2c–), then hM > H. 
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the latter case, there is a tie and c
+
 = c

–
.  Then  is uniquely determined.

38
  At least two of the 

numbers qi lie midway between two integers. 

 In short, if the apportionment is unique, the number  of (A3) is not, and vice versa. 

 Other divisor methods are characterized by different series of divisors.
39

 

 

The method of the largest remainder  For each i, let ri = qi and si = qi – ri.  Then ri is a non-

negative integer, si is a real number with 0  si < 1, and rM + sM = H.  Let R = rM and S = sM.  

These numbers are always integers.  It is theoretically possible that all qi are integers, in 

which case ri = qi for all i and S = 0.  Then perfect proportionality is achieved by letting hi = 

qi.  Otherwise, the number of entities for which 0 < si < 1 is at least S + 1.  Find the S largest 

of the numbers si.  (As above, if several numbers are equal, they shall be counted the 

appropriate number of times.)  For each of the corresponding entities, let hi = ri + 1.  For the 

rest of the entities, let hi = ri.  Ties are broken arbitrarily. 

 Let d
+
 be the smallest of the numbers si which gave hi = ri + 1, and let d

–
 be the largest 

of the remaining numbers si.  That is, d
+
 and d

–
 are nos. S and S + 1 when the numbers si are 

ordered by size.  If all qi are integers, this definition of d
+
 does not make sense, since there is 

no i with hi = ri + 1.  In this case, let d
+
 = 1.  The general definition gives d

–
 = 0.  In all other 

cases, 1 > d
+
  d

–
 > 0.  There is a tie if and only if d

+
 = d

–
. 

 

The Alabama paradox  A paradoxical and undesirable property of the method of the largest 

remainder is the following:  If the total number of seats to be distributed is increased, 

everything else being kept constant, some entities can get fewer seats than before.
40

 

 The claim is only that the phenomenon can occur.  Therefore, one example is sufficient 

proof.  The example given here is as simple as possible, in the sense that I and H are minimal. 

 The effect cannot occur for I = 2 or H  2. 

                                                 

38.   The argument leading from (A1) to (A2) permits only one value of , namely 1/(2c+).  Could (A3) 

nevertheless be satisfied, for at least one of the possible apportionments, by other values of ?  The answer is no. 

 Proof:  Because there is a tie, there exist two different apportionments.  Let them be given by hi and hi'.  Since 

hM = hM' = H, there must be an entity which gets more seats in the former case than in the latter, and vice versa.  

To be specific, assume h1 > h1' and h2 < h2'.  By assumption, both apportionments are of the form (A3); that is, 

there exist positive numbers  and ' so that hi  [qi]½ and hi'  ['qi]½ for all i.  Then h1 > h1' implies q1  

'q1, and since q1 > 0 this gives   '.  Similarly, h2 < h2' implies   ', and  = ' follows.  —  What has now 

been proved, is the one-dimensional version of the statement formulated but not proved in note 30. 

39.   Any strictly increasing series d1, d2, ... of positive divisors defines a divisor method.  In [1] and [2] the 

following restrictions are introduced, in order to rule out certain unreasonable results:  For all k, k – 1  dk  k; 

there are no k and k' so that dk = k – 1 and dk' = k'.  (On the other hand, d1 = 0 is permitted in [1] and [2].  In 

some applications, this possibility should not be ruled out, but it is ignored here in order to simplify.)  —  Let a 

series of divisors d = d1, d2, ... be given and assume that it satisfies the conditions just mentioned.  For 

convenience, define d0 = 0.  For a real number x > 0, a set [x]d is defined by k  [x]d if and only if k is a non-

negative integer and dk  x  dk+1.  The divisor method given by d can be characterized by an analogy of (A3), 

with [qi]d instead of [qi]½.  When the odd numbers method is given by dk = k – ½ (see note 36), the definition 

of [x]d given here coincides with the definition of [x]½ in the main text. 

40.   The phenomenon was first discovered around 1880 in the USA, when computations were made concerning 

the distribution of the seats in the House of Representatives among the states.  It was observed that the State of 

Alabama would lose a seat if the total membership of the House was increased. 
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 First, let I = 3, H = 3, p1 = 135, p2 = 129, and p3 = 36.  Then pM = 300 and q1 = 1.35, 

q2 = 1.29, and q3 = 0.36.  This gives r1 = 1, r2 = 1, r3 = 0, and S = 1.  The largest of the 

numbers si is s3 = 0.36, implying h1 = 1, h2 = 1, and h3 = 1.  In this case, d
+
 = 0.36 and d

–
 = 

0.35. 

 Second, assume H = 4, with I and the pi-vector being unchanged.  Then the 

"normalization factor" H / pM is 4/300, and q1 = 1.8, q2 = 1.72, and q3 = 0.48, giving r1 = 1, 

r2 = 1, r3 = 0, and S = 2.  The two largest of the numbers si are s1 = 0.8 and s2 = 0.72, implying 

h1 = 2, h2 = 2, and h3 = 0.  In this case, d
+
 = 0.72 and d

–
 = 0.48. 

 That is, entity 3 has lost a seat when the only change in the data is an increase in the 

total number of seats to be distributed.  Note that there are no ties involved.
41

 

 The phenomenon cannot occur for a divisor method.
42

  Suppose that a distribution of H 

seats has taken place.  If H + 1 seats shall later be distributed on the basis of the same pi-

vector, it is possible to imitate the original distribution of the H seats, and then give seat no. 

H + 1 to the entity, or one of the entities, which is next in line for receiving a seat. 

 When the odd numbers method is applied to the example presented above, the relevant 

quotients, computed on the basis of the numbers pi, are: 

–  For entity 1:  135, 45, 27 

–  For entity 2:  129, 43 

–  For entity 3:  36 

For H = 3, this gives h1 = 2, h2 = 1, and h3 = 0.  For H = 4, it gives h1 = 2, h2 = 2, and h3 = 0. 

 The numbers c
+
 and c

–
 are defined by computing quotients based on qi.  For H = 3, this 

gives c
+
 = 0.45 and c

–
 = 0.43.  For H = 4, it gives c

+
  0.57 and c

–
 = 0.48. 

 Compared to the method of the largest remainder, the apportionment is different for H = 

3 and equal for H = 4. 

 

The relationship between the methods  Let I, H, and pi for i  M be given, and let hi
O
 and hi

L
 

denote apportionments resulting from distributing the H seats by the odd numbers method and 

the method of the largest remainder, respectively.  Define the numbers ri, si, R, S, c
+
, c

–
, d

+
, 

and d
–
 as before.  Note that R + S = H. 

 Consider the quotients computed for entity i when the seats are distributed by the odd 

numbers method.  Let ki be the number of these quotients that are strictly greater than ½, and 

let ki' be the number of quotients that are greater than or equal to ½.  Define K = kM = iM ki 

and K' = kM'.  That is, K is the total number of quotients that are strictly greater than ½ when 

all the entities are taken together, while K' is the total number of quotients that are greater 

than or equal to ½. 

 If ri > 0, quotient no. ri for entity i is 

                                                 

41.   It is trivial that a similar effect can occur when there are ties.  Let I = 3, H = 1, and p1 = p2 = p3 > 0.  If 

equals are treated equally, any entity can get the one seat, for example, it can be given to entity 1.  Then let H = 

2, the rest of the data remaining unchanged.  Again, if equals are treated equally, any two of the entities can get 

one each of the two seats, for example, the seats can be given to entities 2 and 3.  Entity 1 has lost a seat from 

the first to the second case.  However, entity 1 could have gotten one seat in the second case.  This distinguishes 

the non-trivial example of the main text from the trivial one given here. 

42.   Except in the trivial sense mentioned in note 41. 
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 qi / (2ri–1)  ri / (2ri–1) > ½ 

Hence ki  ri, which also holds when ri = 0.  Quotient no. ri + 1 is 

 qi / (2ri+1) = (ri+si) / (2ri+1) 

This is greater than, equal to, or less than ½ exactly when the same holds for si.  Quotients 

nos. ri + 2, ri + 3, and so on, are less than ½.  The following conclusions can be drawn: 

– If si < ½, then ki = ki' = ri. 

– If si = ½, then ki = ri and ki' = ri + 1. 

– If si > ½, then ki = ki' = ri + 1. 

This covers all cases. 

 Let T be the number of entities i for which si > ½, and let T' be the number of entities i 

for which si  ½.  Then K = R + T, and K' = R + T'. 

 The number of entities i for which si > d
+
, is at most S – 1.  At least one i has si = d

+
, and 

the number of entities i for which si  d
+
, is at least S.

43
  The number of entities i for which 

si > d
–
, is at most S.  At least one i has si = d

–
, and the number of entities i for which si  d

–
, is 

at least S + 1. 

 Note, moreover, that c
+
 is quotient no. H and c

–
 is quotient no. H + 1. 

 A series of statements will now be proved concerning the relationship between c
+
 and 

d
+
, and concerning the relationship between c

–
 and d

–
. 

(i) Assume d
+
 > ½.  If si  d

+
, then si > ½.  Hence S  T and H  K.  At least H quotients are 

strictly greater than ½, and c
+
 > ½. 

(ii) Assume d
+
  ½.  If si  d

+
, then si  ½.  Hence S  T' and H  K'.  At least H quotients 

are greater than or equal to ½, and c
+
  ½. 

(iii) Assume d
–
 > ½.  If si  d

–
, then si > ½.  Hence S + 1  T and H + 1  K.  At least H + 1 

quotients are strictly greater than ½, and c
–
 > ½. 

(iv) Assume d
–
  ½.  If si  d

–
, then si  ½.  Hence S + 1  T' and H + 1  K'.  At least H + 1 

quotients are greater than or equal to ½, and c
–
  ½. 

(v) Assume d
+
 < ½.  If si  ½, then si > d

+
.  Hence T'  S – 1 and K'  H – 1.  At most H – 1 

quotients are greater than or equal to ½, and c
+
 < ½. 

(vi) Assume d
+
  ½.  If si > ½, then si > d

+
.  Hence T  S – 1 and K  H – 1.  At most H – 1 

quotients are strictly greater than ½, and c
+
  ½. 

(vii) Assume d
–
 < ½.  If si  ½, then si > d

–
.  Hence T'  S and K'  H.  At most H quotients 

are greater than or equal to ½, and c
–
 < ½. 

(viii) Assume d
–
  ½.  If si > ½, then si > d

–
.  Hence T  S and K  H.  At most H quotients 

are strictly greater than ½, and c
–
  ½. 

It follows from (i), (ii), (v), and (vi) that d
+
 is greater than, equal to, or less than ½ exactly 

when the same holds for c
+
.  Similarly, (iii), (iv), (vii), and (viii) imply that d

–
 is greater than, 

equal to, or less than ½ exactly when the same holds for c
–
.  Note that it is not claimed that d

+
 

and c
+
 are equal or that d

–
 and c

–
 are equal.  Nor is it necessarily the case that the entity i for 

which si = d
+
 (si = d

–
) is also the entity that won seat no. H (seat no. H + 1) and therefore has 

                                                 

43.   These statements do not necessarily hold when all the numbers ri are integers, in which case S = 0 and d+ = 

1.  Then both methods give the perfectly proportional apportionment hi = ri.  Moreover, c– < ½ < c+, and all the 

statements made below are true. 
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one of its quotients equal to c
+
 (c

–
). 

 Since c
+
  c

–
 and d

+
  d

–
, the following three cases are exhaustive and mutually 

exclusive, that is, exactly one of them must occur: 

(a) c
–
 > ½ and d

–
 > ½ 

(b) c
–
  ½  c

+
 and d

–
  ½  d

+
 

(c) c
+
 < ½ and d

+
 < ½ 

Case (b) can be further divided into two possibilities.  They are mutually exclusive, and they 

are exhaustive within (b): 

(b.1) c
–
  ½  c

+
 and c

–
 < c

+
, d

–
  ½  d

+
 and d

–
 < d

+
 

(b.2) c
–
 = c

+
 = d

–
 = d

+
 = ½ 

 Consider first case (b), in which d
–
  ½  d

+
.  If hi

L
 = ri, then si  d

–
  ½, and if hi

L
 = ri + 

1, then si  d
+
  ½.  This gives hi

L
  [ri+si]½ = [qi]½.  It follows from the discussion of (A3) 

that the hi
L
-vector is also an apportionment according to the odd numbers method.  The 

number  of (A3) can be chosen equal to 1.  In (b.1), there is no tie for any of the methods, 

and the unique apportionment for the odd numbers method, given by the hi
O
-vector, is equal 

to the unique apportionment for the method of the largest remainder, given by the hi
L
-vector.  

In (b.2), there is a tie for both methods.  The set of possible apportionments for the odd 

numbers method is equal to the set of possible apportionment for the method of the largest 

remainder. 

 Then consider case (a).  If the apportionments given by the two methods are not equal, 

there must exist i and i' such that hi
O
 > hi

L
 and hi'

O
 < hi'

L
.  Because c

–
 > ½, the number  of 

(A3) must satisfy  < 1.  Since hi
O
  [qi]½, hi

O
 is equal to qi rounded upwards or 

downwards, that is, hi
O
 is equal to either qi or qi + 1.  From the description of the 

method of the largest remainder, it is clear that hi
L
 is equal to either qi or qi + 1.  Because 

hi
O
 > hi

L
 and qi < qi, this is only possible if qi = qi, hi

O
 = qi + 1 and hi

L
 = qi.  Since 

qi + 1 = hi
O
  [qi]½, qi  qi + ½, while hi

L
 = qi implies qi  qi + d

–
  qi + d

+
.  

These two inequalities give qi – qi  d
+
 – ½.  Concerning entity i', if hi'

O
  qi', then hi'

O
 < 

hi'
L
 implies hi'

O
 = qi' and hi'

L
 = qi' + 1.  Therefore, qi'  qi', + ½ and qi'  qi', + d

+
, which 

gives qi' – qi'  d
+
 – ½.  Otherwise, that is, if hi'

O
 < qi', then qi'  qi' – ½, which gives qi' – 

qi'  ½  d
+
 – ½.  In any case, qi – qi  d

+
 – ½  qi' – qi'.  Since  > 1, this gives qi  qi'. 

 The conclusion is that if the two methods give different results, an entity favored by the 

odd numbers method cannot be bigger, measured by pi or qi, than an entity favored by the 

method of the largest remainder.  If there is a tie in one of the method (or both), the argument 

holds for any hi
O
-vector and any hi

L
-vector that are possible apportionment for the two 

methods.
44

  That is, if it is possible that the odd numbers method favors entity i while the 

method of the largest remainder favors entity i', then qi  qi'. 

 In case (c), a similar argument shows that hi
O
 > hi

L
 and hi'

O
 < hi'

L
 imply qi  qi'. 

 To sum up, in case (b) the two methods give the same result.  They can also give the 

same result in case (a), but if they do not, the odd numbers method is most favorable to small 

entities.  In case (c), any difference must go in the direction of the odd numbers method being 

most favorable to large entities. 

 If I = 2, d
–
  ½  d

+
 must necessarily hold.  Hence case (b) applies.  That is, the two 

                                                 

44.   In this case, as opposed to case (b), there can be a tie for one of the methods and not for the other one. 
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methods are always equal when the seats are to be distributed between only two entities. 

 To illustrate the conclusions above, consider the example used to demonstrate the 

possibility of the Alabama paradox.  For H = 3, c
+
 = 0.45 < ½ and d

+
 = 0.36 < ½, and case (c) 

applies.  When the odd numbers method is used instead of the method of the largest 

remainder, one seat is moved from entity 3 to entity 1, that is, from the smallest to the largest 

entity.  For H = 4, c
+
  0.57 > ½ > c

–
 = 0.48 and d

+
 = 0.72 > ½ > d

–
 = 0.48.  Case (b) applies 

and the methods give the same apportionment. 
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 Table 1 

 Population (pi,j) by Cantons, Constituent Peoples, and groups 

 

Canton Bosniacs Croats Others pi,N 

1 247,856 10,886 85,785 344,527 

2 8,107 44,657 10,861 63,625 

3 361,566 46,908 115,927 524,401 

4 280,944 88,273 110,187 479,404 

5 28,794 81 12,553 41,428 

6 147,607 130,663 60,705 338,975 

7 100,040 108,867 58,726 267,633 

8 1,611 86,164 1,217 88,992 

9 250,928 34,577 207,937 493,442 

10 12,041 59,553 44,395 115,989 

pM,j 1,439,494 610,629 708,293 2,758,416 

 

 

 

 Table 2 

 Normalized population (qi,j) by Cantons, Constituent Peoples, and groups 

 

Canton Bosniacs Croats Others qi,N ri ri
*
 

1 7.1884 0.3157 2.4879 9.9920 9 10 

2 0.2351 1.2951 0.3150 1.8452 3 3 

3 10.4862 1.3604 3.3621 15.2087 14 15 

4 8.1480 2.5601 3.1957 13.9038 13 13 

5 0.8351 0.0023 0.3641 1.2015 3 3 

6 4.2809 3.7895 1.7606 9.8310 10 9 

7 2.9014 3.1574 1.7032 7.7620 9 7 

8 0.0467 2.4989 0.0353 2.5809 3 3 

9 7.2775 1.0028 6.0306 14.3109 13 14 

10 0.3492 1.7272 1.2876 3.3640 3 3 

qM,j 41.7485 17.7094 20.5421 80.0000 80 80 

sj 30 30 20 80  

sj
*
 42 18 20 80  
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 Table 3.1:  Bosniacs 

 Population and quotients 

 

Group Population Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

B 1 247,856 247,856 4 82,619 18 49,571 27 35,408 40 27,540 53 22,532 (59) 

B 2 8,107 8,107            

B 3 361,566 361,566 1 120,522 8 72,313 19 51,652 25 40,174 34 32,870 43 

B 4 280,944 280,944 2 93,648 13 56,189 24 40,135 35 31,216 44 25,540 55 

B 5 28,794 28,794 48 9,598          

B 6 147,607 147,607 6 49,202 28 29,521 46 21,087 (61) 16,401    

B 7 100,040 100,040 12 33,347 42 20,008 (62) 14,291      

B 8 1,611 1,611            

B 9 250,928 250,928 3 83,643 17 50,186 26 35,847 39 27,881 51 22,812 (59) 

B 10 12,041 12,041            

B Sum 1,439,494  

 

Group Population Quotient VII Quotient VIII Quotient IX Quotient X Quotient XI Quotient XII 

B 1 247,856 19,066 (64) 16,524          

B 3 361,566 27,813 52 24,104 56 21,269 (61) 19,030 (64) 17,217 (68) 15,720  

B 4 280,944 21,611 (61) 18,730 (65) 16,526        

B 9 250,928 19,302 (64) 16,729          
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 Table 3.2:  Croats 

 Population and quotients 

 

Group Population Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

C 1 10,886 10,886            

C 2 44,657 44,657 30 14,886          

C 3 46,908 46,908 29 15,636          

C 4 88,273 88,273 14 29,424 47 17,655 66 12,610      

C 5 81 81            

C 6 130,663 130,663 7 43,554 32 26,133 54 18,666 65 14,518    

C 7 108,867 108,867 11 36,289 38 21,773 60 15,552      

C 8 86,164 86,164 15 28,721 49 17,233 67 12,309      

C 9 34,577 34,577 41 11,526          

C 10 59,553 59,553 22 19,851 62 11,911        

C Sum 610,629  
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 Table 3.3:  Others 

 Population and quotients 

 

Group Population Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

O 1 85,785 85,785 16 28,595 50 17,157 68 12,255      

O 2 10,861 10,861            

O 3 115,927 115,927 9 38,642 36 23,185 57 16,561      

O 4 110,187 110,187 10 36,729 37 22,037 59 15,741      

O 5 12,553 12,553            

O 6 60,705 60,705 21 20,235 61 12,141        

O 7 58,726 58,726 23 19,575 63 11,745        

O 8 1,217 1,217            

O 9 207,937 207,937 5 69,312 20 41,587 33 29,705 45 23,104 58 18,903 64 

O 10 44 395 44,395 31 14,798          

O Sum 708,293  

 

Group Population Quotient VII 

O 9 207,937 15,995  
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 Table 4 

 Allocation of seats one by one based on population 

 

 Group Quotient G P C Comment 

1 B 3 361,566 1 1 1  

2 B 4 280,944 1 2 1  

3 B 9 250,928 1 3 1  

4 B 1 247,856 1 4 1  

5 O 9 207,937 1 1 2  

6 B 6 147,607 1 5 1  

7 C 6 130,663 1 1 2  

8 B 3 120,522 2 6 2  

9 O 3 115,927 1 2 3  

10 O 4 110,187 1 3 2  

11 C 7 108,867 1 2 1  

12 B 7 100,040 1 7 2  

13 B 4 93,648 2 8 2  

14 C 4 88,273 1 3 3  

15 C 8 86,164 1 4 1  

16 O 1 85,785 1 4 2  

17 B 9 83,643 2 9 3  

18 B 1 82,619 2 10 3  

19 B 3 72,313 3 11 4  

20 O 9 69,312 2 5 4  

21 O 6 60,705 1 6 3  

22 C 10 59,553 1 5 1  

23 O 7 58,726 1 7 3  

24 B 4 56,189 3 12 4  

25 B 3 51,652 4 13 5  

26 B 9 50,186 3 14 5  

27 B 1 49,571 3 15 4  

28 B 6 49,202 2 16 4  

29 C 3 46,908 1 6 6  

30 C 2 44,657 1 7 1  

31 O 10 44,395 1 8 2  

32 C 6 43,554 2 8 5  

33 O 9 41,587 3 9 6  
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34 B 3 40,174 5 17 7  

35 B 4 40,135 4 18 5  

36 O 3 38,642 2 10 8  

37 O 4 36,729 2 11 6  

38 C 7 36,289 2 9 4  

39 B 9 35,847 4 19 7  

40 B 1 35,408 4 20 5  

41 C 9 34,577 1 10 8  

42 B 7 33,347 2 21 5  

43 B 3 32,870 6 22 9  

44 B 4 31,216 5 23 7  

45 O 9 29,705 4 12 9  

46 B 6 29,521 3 24 6  

47 C 4 29,424 2 11 8  

48 B 5 28,794 1 25 1  

49 C 8 28,721 2 12 2  

50 O 1 28,595 2 13 6  

51 B 9 27,881 5 26 10  

52 B 3 27,813 7 27 10  

53 B 1 27,540 5 28 7  

54 C 6 26,133 3 13 7  

55 B 4 25,540 6 29 9  

56 B 3 24,104 8 30 11 Bosniacs can get no more seats 

57 O 3 23,185 3 14 12  

58 O 9 23,104 5 15 11  

 B 9 22,812 (6) (31)  Bosniacs ineligible 

 B 1 22,532 (6) (32)  Bosniacs ineligible 

59 O 4 22,037 3 16 10  

60 C 7 21,773 3 14 6  

 B 4 21,611 (7) (33)  Bosniacs ineligible 

 B 3 21,269 (9) (34)  Bosniacs ineligible 

 B 6 21,087 (4) (35)  Bosniacs ineligible 

61 O 6 20,235 2 17 8  

 B 7 20,008 (3) (36)  Bosniacs ineligible 

62 C 10 19,851 2 18 3 Canton 10 can get no more seats 

63 O 7 19,575 2 18 7  

 B 9 19,302 (7) (37)  Bosniacs ineligible 
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 B 1 19,066 (7) (38)  Bosniacs ineligible 

 B 3 19,030 (10) (39)  Bosniacs ineligible 

64 O 9 18,903 6 19 12  

 B 4 18,730 (8) (40)  Bosniacs ineligible 

65 C 6 18,666 4 19 9  

66 C 4 17,655 3 20 11  

67 C 8 17,233 3 21 3 Canton 8 can get no more seats 

 B 3 17,217 (11) (41)  Bosniacs ineligible 

68 O 1 17,157 3 20  Others can get no more seats 
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 Table 5 

 Allocation of the first 68 seats based on population 

 

Canton Bosniacs Croats Others Total 

1 5  3 8 

2  1  1 

3 8 1 3 12 

4 6 3 3 12 

5 1   1 

6 3 4 2 9 

7 2 3 2 7 

8  3  3 

9 5 1 6 12 

10  2 1 3 

Total 30 18 20 68 

 

 

 

 Table 6 

 Final apportionment based on population 

 

Canton Bosniacs Croats Others Total 

1 5 1 3 9 

2  3  3 

3 8 3 3 14 

4 6 4 3 13 

5 1 2  3 

6 3 5 2 10 

7 2 5 2 9 

8  3  3 

9 5 2 6 13 

10  2 1 3 

Total 30 30 20 80 
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 Table 7 

 Population normalized by Canton (qi,j
C
) 

 

Canton Bosniacs Croats Others qi,N
C
 ri 

1 6.4747 0.2844 2.2409 9.0000 9 

2 0.3823 2.1056 0.5121 3.0000 3 

3 9.6528 1.2523 3.0949 14.0000 14 

4 7.6184 2.3937 2.9879 13.0000 13 

5 2.0851 0.0059 0.9090 3.0000 3 

6 4.3545 3.8547 1.7908 10.0000 10 

7 3.3642 3.6610 1.9748 9.0000 9 

8 0.0543 2.9047 0.0410 3.0000 3 

9 6.6108 0.9110 5.4782 13.0000 13 

10 0.3114 1.5403 1.1483 3.0000 3 

qM,j
C
 40.9085 18.9136 20.1779 80.0000 80 

sj 30 30 20 80  

 

 

 

 Table 8 

 Final apportionment based on normalization by Canton 

 

Canton Bosniacs Croats Others Total 

1 5 2 2 9 

2  2 1 3 

3 7 4 3 14 

4 6 4 3 13 

5 2  1 3 

6 3 5 2 10 

7 2 5 2 9 

8  3  3 

9 5 3 5 13 

10  2 1 3 

Total 30 30 20 80 
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 Table 9 

 Population normalized by Constituent People (qi,j
P
) 

 

Canton Bosniacs Croats Others qi,N
P
 ri 

1 5.1655 0.5348 2.4223 8.1226 9 

2 0.1690 2.1940 0.3067 2.6697 3 

3 7.5353 2.3046 3.2734 13.1133 14 

4 5.8551 4.3368 3.1113 13.3032 13 

5 0.6001 0.0040 0.3545 0.9586 3 

6 3.0762 6.4194 1.7141 11.2097 10 

7 2.0849 5.3486 1.6582 9.0917 9 

8 0.0336 4.2332 0.0344 4.3012 3 

9 5.2295 1.6988 5.8715 12.7998 13 

10 0.2509 2.9258 1.2536 4.4303 3 

qM,j
P
 30.0001 30.0000 20.0000 80.0001 80 

sj 30 30 20 80  

 

 

 

 Table 10 

 Final apportionment based on normalization by Constituent People 

 

Canton Bosniacs Croats Others Total 

1 5 1 3 9 

2  3  3 

3 8 2 4 14 

4 6 4 3 13 

5 1 2  3 

6 3 6 1 10 

7 2 5 2 9 

8  3  3 

9 5 2 6 13 

10  2 1 3 

Total 30 30 20 80 
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 Table 11 

 Continuous allocation (ai,j) 

 

Canton Bosniacs Croats Others ai,N i
c
 

1 5.5831 0.7131 2.7038 9.0000 1.1877 

2 0.1588 2.5436 0.2977 3.0001 1.0327 

3 7.6674 2.8927 3.4399 14.0000 1.1182 

4 5.2792 4.8237 2.8972 13.0001 0.9908 

5 1.8539 0.0152 1.1309 3.0000 3.3949 

6 2.4098 6.2034 1.3867 9.9999 0.8608 

7 1.8050 5.7123 1.4827 9.0000 0.9514 

8 0.0190 2.9608 0.0201 2.9999 0.6231 

9 5.0777 2.0347 5.8876 13.0000 1.0670 

10 0.1460 2.1005 0.7534 2.9999 0.6395 

aM,j 29.9999 30.0000 20.0000 79.9999  

j
c
 0.6539 1.9016 0.9150   
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 Table 12.1:  Bosniacs 

 Continuous allocation and quotients 

 

Group Allocation Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

B 1 5.5831 5.5831 5 1.8610 22 1.1166 36 0.7976 51 0.6203 64 0.5076 (79) 

B 2 0.1588 0.1588            

B 3 7.6674 7.6674 1 2.5558 14 1.5335 28 1.0953 37 0.8519 46 0.6970 57 

B 4 5.2792 5.2792 6 1.7597 25 1.0558 38 0.7542 52 0.5866 69 0.4799  

B 5 1.8539 1.8539 23 0.6180 65 0.3708        

B 6 2.4098 2.4098 16 0.8033 50 0.4820 79 0.3443      

B 7 1.8050 1.8050 24 0.6017 66 0.3610        

B 8 0.0190 0.0190            

B 9 5.0777 5.0777 7 1.6926 26 1.0155 39 0.7254 54 0.5642 72 0.4616  

B 10 0.1460 0.1460            

B Sum 29.9999  

 

Group Allocation Quotient VII Quotient VIII Quotient IX 

B 1 5.5831 0.4295      

B 3 7.6674 0.5898 68 0.5112 78 0.4510  
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 Table 12.2:  Croats 

 Continuous allocation and quotients 

 

Group Allocation Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

C 1 0.7131 0.7131 55 0.2377          

C 2 2.5436 2.5436 15 0.8479 47 0.5087 (79) 0.3634      

C 3 2.8927 2.8927 12 0.9642 43 0.5785 71 0.4132      

C 4 4.8237 4.8237 8 1.6079 27 0.9647 42 0.6891 59 0.5360 75 0.0648  

C 5 0.0152 0.0152            

C 6 6.2034 6.2034 2 2.0678 18 1.2407 31 0.8862 45 0.6893 58 0.5639 73 

C 7 5.7123 5.7123 4 1.9041 21 1.1425 34 0.8160 49 0.6347 63 0.5193 77 

C 8 2.9608 2.9608 10 0.9869 40 0.5922 67 0.4230      

C 9 2.0347 2.0347 19 0.6782 61 0.4069        

C 10 2.1005 2.1005 17 0.7002 56 0.4201        

C Sum 30.0000  

 

Group Allocation Quotient VII 

C 6 6.2034 0.4772  

C 7 5.7123 0.4394  
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 Table 12.3:  Others 

 Continuous allocation and quotients 

 

Group Allocation Quotient I Quotient II Quotient III Quotient IV Quotient V Quotient VI 

O 1 2.7038 2.7038 13 0.9013 44 0.5408 74 0.3863      

O 2 0.2977 0.2977            

O 3 3.4399 3.4399 9 1.1466 33 0.6880 60 0.4914 (79) 0.3822    

O 4 2.8972 2.8972 11 0.9657 41 0.5794 70 0.4139      

O 5 1.1309 1.1309 35 0.3770          

O 6 1.3867 1.3867 30 0.4622          

O 7 1.4827 1.4827 29 0.4942 (79) 0.2965        

O 8 0.0201 0.0201            

O 9 5.8876 5.8876 3 1.9625 20 1.1775 32 0.8411 48 0.6542 62 0.5352 76 

O 10 0.7534 0.7534 53 0.2511          

O Sum 20.0000  

 

Group Allocation Quotient VII 

O 9 5.8876 0.4529  
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 Table 13 

 Allocation of seats one by one based on continuous allocation 

 

 Group Quotient G P C Comment 

1 B 3 7.6674 1 1 1  

2 C 6  6.2034 1 1 1  

3 O 9 5.8876 1 1 1  

4 C 7 5.7123 1 2 1  

5 B 1 5.5831 1 2 1  

6 B 4 5.2792 1 3 1  

7 B 9 5.0777 1 4 2  

8 C 4 4.8237 1 3 2  

9 O 3 3.4399 1 2 2  

10 C 8 2.9608 1 4 1  

11 O 4 2.8972 1 3 3  

12 C 3 2.8927 1 5 3  

13 O 1 2.7038 1 4 2  

14 B 3 2.5558 2 5 4  

15 C 2 2.5436 1 6 1  

16 B 6 2.4098 1 6 2  

17 C 10 2.1005 1 7 1  

18 C 6 2.0678 2 8 3  

19 C 9 2.0347 1 9 3  

20 O 9 1.9625 2 5 4  

21 C 7 1.9041 2 10 2  

22 B 1 1.8610 2 7 3  

23 B 5 1.8539 1 8 1  

24 B 7 1.8050 1 9 3  

25 B 4 1.7597 2 10 4  

26 B 9 1.6926 2 11 5  

27 C 4 1.6079 2 11 5  

28 B 3 1.5335 3 12 5  

29 O 7 1.4827 1 6 4  

30 O 6 1.3867 1 7 4  

31 C 6 1.2407 3 12 5  

32 O 9 1.1775 3 8 6  

33 O 3 1.1466 2 9 6  
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34 C 7 1.1425 3 13 5  

35 O 5 1.1309 1 10 2  

36 B 1 1.1166 3 13 4  

37 B 3 1.0953 4 14 7  

38 B 4 1.0558 3 15 6  

39 B 9 1.0155 3 16 7  

40 C 8 0.9869 2 14 2  

41 O 4 0.9657 2 11 7  

42 C 4 0.9647 3 15 8  

43 C 3 0.9642 2 16 8  

44 O 1 0.9013 2 12 5  

45 C 6 0.8862 4 17 6  

46 B 3 0.8519 5 17 9  

47 C 2 0.8479 2 18 2  

48 O 9 0.8411 4 13 8  

49 C 7 0.8160 4 19 6  

50 B 6 0.8033 2 18 7  

51 B 1 0.7976 4 19 6  

52 B 4 0.7542 4 20 9  

53 O 10 0.7534 1 14 2  

54 B 9 0.7254 4 21 9  

55 C 1 0.7131 1 20 7  

56 C 10 0.7002 2 21 3 Canton 10 can get no more seats 

57 B 3 0.6970 6 22 10  

58 C 6 0.6893 5 22 8  

59 C 4 0.6891 4 23 10  

60 O 3 0.6880 3 15 11  

61 C 9 0.6782 2 24 10  

62 O 9 0.6542 5 16 11  

63 C 7 0.6347 5 25 7  

64 B 1 0.6203 5 23 8  

65 B 5 0.6180 2 24 3 Canton 5 can get no more seats 

66 B 7 0.6017 2 25 8  

67 C 8 0.5922 3 26 3 Canton 8 can get no more seats 

68 B 3 0.5898 7 26 12  

69 B 4 0.5866 5 27 11  

70 O 4 0.5794 3 17 12  



PROPORTIONALITY IN TWO DIMENSIONS 
 

  40 

71 C 3 0.5785 3 27 13  

72 B 9 0.5642 5 28 12  

73 C 6 0.5639 6 28 9  

74 O 1 0.5408 3 18 9 Canton 1 can get no more seats 

75 C 4 0.5360 5 29 13 Canton 4 can get no more seats 

76 O 9 0.5352 6 19 13 Canton 9 can get no more seats 

77 C 7 0.5193 6 30 9 Croats can get no more seats 

Canton 7 can get no more seats 

78 B 3 0.5112 8 29 14 Canton 3 can get no more seats 

 C 2 0.5087 (3) (31)  Croats ineligible 

 B 1 0.5076 (6)  (10) Canton 1 ineligible 

 O 7 0.4942 (2)  (10) Canton 7 ineligible 

 O 3 0.4914 (4)  (15) Canton 3 ineligible 

79 B 6 0.4820 3 30 10 Bosniacs can get no more seats 

Canton 6 can get no more seats 
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 Table 14 

 Distribution of the first 79 seats based on continuous allocation 

 

Canton Bosniacs Croats Others Total 

1 5 1 3 9 

2  2  2 

3 8 3 3 14 

4 5 5 3 13 

5 2  1 3 

6 3 6 1 10 

7 2 6 1 9 

8  3  3 

9 5 2 6 13 

10  2 1 3 

Total 30 30 19 79 

 

 

 

 Table 15 

 Final apportionment based on continuous allocation 

 

Canton Bosniacs Croats Others Total 

1 5 1 3 9 

2  2 1 3 

3 8 3 3 14 

4 5 5 3 13 

5 2  1 3 

6 3 6 1 10 

7 2 6 1 9 

8  3  3 

9 5 2 6 13 

10  2 1 3 

Total 30 30 20 80 
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 Table 16 

 Basis for direct solution of the discrete problem (ijqi,j) 

 

Canton Bosniacs Croats Others i
d
 

1 5.4999 0.6763 2.6949 1.1700 

2 0.1621 2.5001 0.3074 1.0543 

3 7.6674 2.7852 3.4803 1.1182 

4 5.2792 4.6443 2.9313 0.9908 

5 1.8539 0.0146 1.1442 3.3949 

6 2.5001 6.1965 1.4556 0.8931 

7 1.8050 5.4999 1.5001 0.9514 

8 0.0190 2.8507 0.0204 0.6231 

9 5.0777 1.9591 5.9569 1.0670 

10 0.1460 2.0224 0.7623 0.6395 

j
d
 0.6539 1.8309 0.9258  

 

 

 

 Table 17 

 Final apportionment when the discrete problem is solved directly 

 

Canton Bosniacs Croats Others Total 

1 5 1 3 9 

2  3  3 

3 8 3 3 14 

4 5 5 3 13 

5 2  1 3 

6 3 6 1 10 

7 2 5 2 9 

8  3  3 

9 5 2 6 13 

10  2 1 3 

Total 30 30 20 80 
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 Table 18 

 Comparison of apportionment by five methods 

 

Canton Bosniacs Croats Others rj 

 0 C P T D 0 C P T D 0 C P T D  

1 5 5 5 5 5 1 2 1 1 1 3 2 3 3 3 9 

2      3 2 3 2 3  1  1  3 

3 8 7 8 8 8 3 4 2 3 3 3 3 4 3 3 14 

4 6 6 6 5 5 4 4 4 5 5 3 3 3 3 3 13 

5 1 2 1 2 2 2  2    1  1 1 3 

6 3 3 3 3 3 5 5 6 6 6 2 2 1 1 1 10 

7 2 2 2 2 2 5 5 5 6 5 2 2 2 1 2 9 

8      3 3 3 3 3      3 

9 5 5 5 5 5 2 3 2 2 2 6 5 6 6 6 13 

10      2 2 2 2 2 1 1 1 1 1 3 

Total 30 30 30 30 30 30 30 30 30 30 20 20 20 20 20 80 

 

 

0 Population, no normalization (Section 3, Table 6) 

C Normalization by Canton (Section 4, Table 8) 

P Normalization by Constituent People (Section 4, Table 10) 

T Two-dimensional normalization (Sections 5 and 6, Table 15) 

D Discrete solution (Sections 7 and 8, Table 17) 
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 Table 19 

 Distance between apportionments 

 

 0 C P T 

C 6    

P 2 8   

T 6 6 6  

D 4 6 4 2 

 

 

0 Population, no normalization (Section 3, Table 6) 

C Normalization by Canton (Section 4, Table 8) 

P Normalization by Constituent People (Section 4, Table 10) 

T Two-dimensional normalization (Sections 5 and 6, Table 15) 

D Discrete solution (Sections 7 and 8, Table 17) 


