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Deciding how to allocate the seats of a deliberative assembly is one of the most
fundamental problems in the political organization of societies and has been widely
studied over two centuries already. The idea of proportionality is at the core of most
approaches to tackle this problem, and this notion is captured by the divisor methods,
such as the Jefferson/D’Hondt method. In a seminal work, Balinski and Demange
extended the single-dimensional idea of divisor methods to the setting in which the
seat allocation is simultaneously determined by two dimensions and proposed the so-
called biproportional apportionment method. The method, currently used in several
electoral systems, is, however, limited to two dimensions and the question of extending
it is considered to be an important problem both theoretically and in practice. In this
work we initiate the study of multidimensional proportional apportionment. We first
formalize a notion of multidimensional proportionality that naturally extends that of
Balinski and Demange. By means of analyzing an appropriate integer linear program
we are able to prove that, in contrast to the two-dimensional case, the existence of
multidimensional proportional apportionments is not guaranteed and deciding their
existence is a computationally hard problem (NP-complete). Interestingly, our main
result asserts that it is possible to find approximate multidimensional proportional
apportionments that deviate from the marginals by a small amount. The proof arises
through the lens of discrepancy theory, mainly inspired by the celebrated Beck–Fiala
theorem. We finally evaluate our approach by using the data from the recent 2021
Chilean Constitutional Convention election.

apportionment | integer programming | social choice

A cornerstone of modern democracies is the division of the political organization, generally
including a deliberative assembly with the goal of reflecting the needs of different segments
across the population. In the apportionment problem, the purpose is to allocate the total
number of seats in a deliberative assembly, and how to solve this problem is something
that has been discussed and studied extensively in modern history. A natural goal that
is at the core of many apportionment systems is the idea of proportionality. That is, a
party receives an amount of seats that is proportional to the number of votes that the
party obtained in the election. Since in general the seats are not divisible, it is necessary
to properly formalize the notion of proportionality in an integral setting. The divisor
methods provide an answer to this problem, based on appropriately scaling the votes and
rounding the result to meet the house size. These methods are widely used at national and
regional levels in many democracies around the world. The two most common versions
are, by far, the Jefferson/D’Hondt method proposed by Thomas Jefferson in 1792 and
the Webster/Sainte-Laguë method first proposed by Daniel Webster in 1832. While both
methods correspond to divisor methods, the latter rounds to the nearest integer while the
former takes integer part (1).

In their seminal work, Balinski and Demange (2, 3) extended the notion of propor-
tionality and divisor methods to the case in which the apportionment is ruled by two
dimensions, studying this extension from an axiomatic and algorithmic point of view. In
this setting, an instance is given by an integral matrix (of votes) where the rows typically
represent the political parties and the columns represent the regions. We are also given
a list of strictly positive integers, called marginals, specifying the row and column sums
for any feasible biproportional apportionment. Thus the row marginals account for the
number of seats that have to be allocated to the corresponding party, and the column
marginals correspond to the number of seats a given district should get.* The goal is to find
a matrix (of seats) satisfying the marginals and keeping proportionality with respect to the
votes simultaneously in both dimensions. This notion is captured by a set of multipliers,

*Generally, party marginals correspond to the proportion of seats each party should get, given its proportion on the number
of votes, by applying some divisor method. Sometimes, however, a certain minimum proportion of the votes is imposed to
obtain seats in the house. District marginals, on the other hand, are often proportional to the population of each district.
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one for each row and column. The biproportional apportionment
method is currently used in elections of several cantons in Switzer-
land.†

A distinctive feature of the biproportional method is that
the existence (and essential uniqueness) is guaranteed (2), under
very natural conditions. However, by design, the biproportional
method is limited to the case of apportionments ruled by two
dimensions. Departing from the two-dimensional case is not
only a challenging mathematical question but also a relevant
practical problem. Indeed, as modern societies become more
complex, representation of dimensions beyond political affiliation
and geography is increasingly demanded (4). For instance, New
Zealand’s parliament includes ethnic representation while the re-
cently elected 2021 Chilean Constitutional Convention includes
gender balance as a constraint. Another example, mentioned by
Demange (5), is the proposed division of three types of “con-
stituent people” (Bosniacs, Croats, and Others) in the Parliament
of the Federation of Bosnia and Herzegovina, which led Demange
to raise the multidimensional proportional apportionment as a
challenging question.

In this paper, we initiate the study of multidimensional pro-
portional apportionment and establish that if we allow small
deviations from the prescribed marginals, then existence is again
guaranteed. As an illustration, in the case of three dimensions,
say political, regional, and gender, our main theorem states that
there exists a three-dimensional proportional apportionment that
deviates by at most one from each of the prescribed marginals.
We remark that using such a method in practice requires defining
precisely how the marginals are computed for each dimension
and designing the ballots appropriately. For instance, an open-
list ballot could be used where the party and gender of each
candidate are specified, while the marginals may come from legal
mandates. Alternatively, among other options, a closed-list ballot
with parties’ lists separated by gender could be used.

Our Contribution. One of the key technical ingredients used to
study the biproportional apportionment corresponds to a linear
program, inspired by the closely related matrix-scaling problem
(6–8). Following this approach, we introduce an integer linear
program to analyze the multidimensional setting and provide
structural results by studying its linear relaxation. Specifically,
we prove that the existence of a multidimensional proportional
apportionment is fully characterized by the fact that the linear
relaxation of this integer linear program admits an integer optimal
solution. We can then use this technique to establish that in
general multidimensional proportional apportionments may fail
to exist. This result is established by extending the network flow
approach (6, 9) and conducting a careful primal–dual analysis.
Furthermore, we use this approach to show that determining the
existence of a proportional apportionment in the multidimen-
sional setting (dimension 3 and higher) is a computationally hard
problem (NP-complete). This is in sharp contrast with the two-
dimensional case, in which this decision problem is polynomially
solvable (2, 3). These results can be found in Section 2, and
SI Appendix, section 1 contains their proofs.

Given that multidimensional proportional apportionments
may fail to exist (and are in general hard to compute), we
study what happens when we allow small violations in the
marginals. Specifically, we consider the question of whether
we can obtain an apportionment satisfying the proportionality
condition by allowing it to violate the marginals by a certain
amount and whether this can be done efficiently (polynomial in

†These include Zurich, Aargau, Schaffhausen, Nidwalden, Zug, Schwyz, and Valais.

the house size). Our main result provides a positive answer to this
question. Specifically, we prove that, if the nonnegative integers
u1, . . . , ud are the target maximum violations in each dimension,
a d -dimensional proportional apportionment exists so long as∑d

�=1 1/(u� + 2)≤ 1.‡,§ In dimension 2, with u1 = u2 = 0
this recovers the existence result of Balinski and Demange (2),
while in dimension 3 a violation of one seat in each dimension is
enough to guarantee existence. The main technical ingredient is to
follow the lens of discrepancy theory, mainly the celebrated Beck–
Fiala theorem (10). Furthermore, we provide a finer analysis on the
deviations allowed by our algorithm, going beyond the typical �∞
analysis of deviations in discrepancy rounding of linear programs.
To this end, we design an algorithm for an appropriate discrepancy
problem in hypergraphs that might be of independent interest.
Starting from an optimal solution of our base linear relaxation
for the multidimensional problem, we run our discrepancy
algorithm to get an apportionment with the desired deviations,
and by using the structure of our linear program we show that
proportionality is satisfied. These results can be found in Section
3, and SI Appendix, section 2 contains their proofs.

Finally, in Section 4, we test our method for finding a three-
dimensional proportional apportionment in the context of the
2021 Chilean Constitutional Convention election. This election
sought to elect a convention achieving proportionality across three
dimensions: political, geographical, and gender. We observe that
our method leads to an apportionment fulfilling the prescribed
marginals and achieving exact gender parity. We also conclude
that our method is significantly more representative than the one
used. Finally, by simulating small random perturbations to the
votes, we conclude that our approach is more robust in that
these perturbations translate into only small changes in the house
configuration.

Literature Overview. There is a rich literature body for the appor-
tionment problem and the divisor methods, intersecting different
areas such as operations research, computer science, and political
science. For a formal treatment of the theory and a historical
survey, we refer to the book of Balinski and Young (11) and to the
recent book by Pukelsheim (12). For a deeper treatment of social
choice and new methods, we also refer to the book and article by
Balinski and Laraki (13, 14).
Biproportionality and matrix scaling. After Balinski and Demange
(2, 3) first developed the biproportional method, some variants of
it were later proposed by Balinski (15) and Balinski and González
(16). Rote and Zachariasen (8) and Gaffke and Pukelsheim (6, 7)
provided a unified view of biproportionality using network flow
formulations. Pukelsheim et al. (17) also provided a wider view
of network flow methods and their usage for electoral systems.
The matrix-scaling problem has been studied extensively in the
optimization, statistics, algorithms, and machine-learning com-
munities and we refer to the survey by Idel (18) for an extensive
treatment of this problem. Particularly relevant is the work by
Sinkhorn (19) and subsequent complexity and algorithmic results
by Sinkhorn and Knopp (20), Rothblum and Schneider (9), and
Nemirovski and Rothblum (21). Kalantari et al. (22) analyzed an
algorithm for matrix scaling introduced by Balinski and Demange
(3), and very recently there have been several works on developing
faster algorithms for matrix scaling and improved analysis of
existing methods (23–25).

‡That is, in each dimension � ∈ {1, . . . , d} we allow the marginals to be additively violated
by at most u� .
§The result actually requires a mild additional assumption that, for instance, is satisfied if
the original vote matrix does not contain zeros.
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Discrepancy theory. In the classic discrepancy minimization prob-
lem, there is a fractional vector x with entries in [0, 1] satisfying
Ax = b for some binary matrix A and an integer vector b, and
the goal is to round x to get an integral vector x̃ with entries in
{0, 1} in a way such that the maximum deviation ‖Ax −Ax̃‖∞
is as small as possible. In a celebrated result, Beck and Fiala (10)
provided an algorithm to perform such rounding while achieving
a maximum deviation of at most the maximum �1 norm of a
column in A. This result was later improved for certain regimes
(26–28). Also remarkable are the recent works by Bansal et al. (29–
31), Lovett and Meka (32), and Rothvoss (28) that provide several
algorithmic results for different discrepancy problems involving
�∞ and �2 violations.

1. Preliminaries

In the classic apportionment problem, the input is given by a
pair (P,H ), where P is a vector with integer nonnegative entries
containing the votes obtained by each party i ∈ {1, . . . ,n} and H
is the house size, i.e., the total number of seats to allocate. The goal
is to decide how many of the H seats should be given to each party.
A feasible solution to this problem is formally described by a vector
x such that

∑n
i=1 xi =H and xi is a nonnegative integer for every

i ∈ {1, . . . ,n}, representing the number of seats allocated to
party i. Clearly, a feasible solution always exists, but the challenge
is to allocate the H seats proportionally to the votes. Naturally,
seats cannot be divided fractionally, and therefore proportionality
in this context needs to be defined appropriately. This paradigm
is captured by a family of broadly used methods called divisor
methods, which we formally describe in what follows.

A. Signpost Sequences, Rounding Rules, and Divisor Methods.
Following the formalization introduced by Balinski and Young
(11), a signpost sequence is a function defined over the nonnega-
tive integers, s : N→ R+, satisfying s(0) = 0, s(q) ∈ [q − 1, q ]
for every strictly positive integer q , and the following left–right
disjunction property: 1) If s(p) = p − 1 for some p ≥ 2, then
s(q)< q for every q ≥ 1, and 2) if s(q) = q for some q ≥ 1,
then s(p)> p − 1 for every p ≥ 2. In particular, any signpost
sequence is strictly increasing over the strictly positive integers. To
every signpost sequence s we can associate a rounding rule �·�s as
follows: �0�s = {0}, �t�s = {q} when t ∈ (s(q), s(q + 1)) and
�t�s = {q − 1, q} when t = s(q)> 0. Especially relevant are the
signpost sequences of the form s(q) = q −Δ for every strictly
positive integer q and some fixed Δ ∈ [0, 1], as they capture the
usual rounding operations. These signpost sequences are called
stationary. To mention a few, Δ= 0 corresponds to the classic
downward rounding when t is fractional, since s1(q) = q for ev-
ery q ∈ N implies, for example, that both 4.3 and 4.8 belong to the
interval (s1(4), s1(5)) = (4, 5) and thus �4.3�s1 = �4.8�s1 = 4.
Similarly, Δ= 1/2 coincides with the standard rounding when
t − 1/2 is fractional, since defining s2(q) = q − 1/2 for ev-
ery q ∈ N we have, following the same example, that 4.3 ∈
(s2(4), s2(5)) = (3.5, 4.5) and 4.8 ∈ (s(5), s(6)) = (4.5, 5.5),
and therefore �4.3�s2 = 4 and �4.8�s2 = 5.

The divisor method associated to a signpost sequence s works
as follows: Given a pair (P,H ), compute a vector x ∈ N

n with∑n
i=1 xi = H for which there is a strictly positive value λ, called

a multiplier, such that xi ∈ �λPi�s for each i ∈ {1, . . . ,n}.
For every signpost sequence and every pair (P,H ), the divisor
method is guaranteed to provide a solution (11). In the context
of voting, the classic Jefferson/D’Hondt method corresponds to
the divisor method associated to the stationary signpost sequence

withΔ= 0. Other classic methods are the one by Webster/Sainte-
Laguë, corresponding to the divisor method associated to the
stationary signpost sequence with Δ= 1/2, and the method by
Adams, corresponding to the divisor method associated to the
stationary signpost sequence with Δ= 1. As a simple example,
consider an instance with 10 seats to allocate and three political
parties obtaining votes 129, 102, and 69. As depicted below, under
the Jefferson/D’Hondt method the parties obtain 5, 3, and 2 seats,
respectively, whereas the Webster/Sainte-Laguë method leads to
an apportionment of 4, 4, and 2:

P =

(
129
102
69

)
λ=0.039−−−−−→ λP =

(
5.03
3.98
2.69

)
�·�s1−−−→ x =

(
5
3
2

)
,

P =

(
129
102
69

)
λ=0.0347−−−−−−→ λP =

(
4.48
3.54
2.39

)
�·�s2−−−→ x =

(
4
4
2

)
.

Observe that a key property of divisor methods is that a vote
for one candidate favors the whole party, thus prioritizing voting
for common ideas over personal candidates. This property still
holds in the extension of divisor methods to multiple dimensions
that follows. For an extensive treatment of the theory of divisor
methods and their historical aspects, we refer to the books by
Balinski and Young (11) and Pukelsheim (12).

B. Multidimensional Apportionment. Balinski and Demange (2,
3) extended the classic notion of proportionality captured by the
divisor methods to the case in which the election is ruled by two
dimensions, introducing the so-called biproportional method.
These dimensions may represent, for example, the set of parties
and the set of districts, and both the voting results and the appor-
tionment can be written as a matrix where each row corresponds
to a party and each column corresponds to a district. Intuitively,
the idea in this case is to find one multiplier by row and one
multiplier by column, such that when scaling the vote matrix
according to these multipliers and rounding the result, we obtain
an apportionment matrix where the sum of each row is equal to the
number of seats assigned to the corresponding party and similarly,
each column sums up to the amount of seats the corresponding
district should get. In the previous example, let us suppose that
the votes are cast in two different districts and that five seats
should be allocated to the candidates running in each of them.
The procedure for finding a biproportional apportionment for a
specific vote matrix according to the downward rounding rule is
illustrated below. As in the one-dimensional example, the first step
corresponds to the scaling process, in this case multiplying each
entry of the vote matrix by the multiplier associated to its row
(on the right of the matrix) and by the multiplier associated to its
column (below the matrix), and the second step corresponds to
the rounding procedure:

V =

(
84 45
69 33
42 27

)

0.5 1

0.07
0.06
0.07

−→
(
2.94 3.15
2.07 1.98
1.47 1.89

)
�·�s1−−−→ x =

(
2 3
2 1
1 1

)
.

It is important to note that the apportionment matrix specifies
the number of seats assigned to each party in each district, so in
this example the first party obtains two seats in the first district and
three seats in the second district and similarly for each other party.
Observe that the sums by row are exactly the one-dimensional
apportionment (5, 3, 2) and that both columns sum up to 5, as
desired.
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We now generalize this approach to arbitrary dimension in
the natural way. In the d-dimensional apportionment problem,
the input is given by a tuple (N ,V,m−,m+,H ) described as
follows: For each � ∈ {1, . . . , d} we have a set N� such that N =
{N1, . . . ,Nd} and V is a vector with nonnegative integer entries
in the Cartesian product

∏d
�=1 N�. For each � ∈ {1, . . . , d} and

each v ∈N� there are integer values m−
v and m+

v > 0 called lower
and upper marginals, respectively, and H is a strictly positive
integer value such that

∑
v∈N�

m−
v ≤ H ≤

∑
v∈N�

m+
v for every

� ∈ {1, . . . , d}. In the context of a political election, the values
Ve represent the number of votes obtained by the tuple e, H
represents the house size, and the value m− (respectively m+)
defines a lower (upper) bound for the amount of seats that
each element (party, district, etc.) should get.¶ For an instance
(N ,V,m−,m+,H ) we denote by E (V) the subset of tuples
e ∈

∏d
�=1 N� such that Ve > 0.

Given a d -dimensional instance (N ,V,m−,m+,H ) and a
signpost sequence s , we say that x ∈ N

E(V) is a d-dimensional
proportional apportionment if there exists a strictly positive value
μ, and for every � ∈ {1, . . . , d} and every v ∈ N� there exists
a strictly positive value λv , called a multiplier, such that the
following holds:

m−
v ≤

∑
e∈E(V):e�=v

xe ≤m+
v

for every � ∈ {1, . . . , d}
and every v ∈ N�,

[1]

∑
e∈E(V)

xe = H , [2]

s(xe)≤ Ve · μ·
d∏

�=1

λe� ≤ s(xe + 1) for every e ∈ E (V), [3]

and furthermore, we have the following conditions regarding the
values of the multipliers for every � ∈ {1, . . . , d} and every v ∈
N�,

If λv > 1, then we have
∑

e∈E(V):e�=v

xe =m−
v , [4]

If λv < 1, then we have
∑

e∈E(V):e�=v

xe =m+
v . [5]

We denote by As(N ,V,m−,m+,H ) the set of triplets (x ,μ,λ)
where x is integral, μ is strictly positive, λ is strictly positive
in each entry, and the triplet satisfies conditions 1–5. Note that
when s(1) = 0, any x satisfying condition 3 must be strictly
positive in each entry. In addition, given the strict positivity of
the values μ and λv , condition 3 is equivalent to xe ∈ �Ve · μ ·∏d

�=1 λe��s ; thus, it captures the idea of proportionality. We
remark that for d = 2 this corresponds to the proportionality
notion of Balinski and Demange, in the sense that their definition
of a biproportional apportionment is equivalent to our definition
of a two-dimensional proportional apportionment.

In this type of method, the marginals m−
v ,m+

v have to be
determined for each element v, and the votes Ve must be known
for each tuple e. In the case of the marginals, they might come
either from values previously defined by law, as in the case of
districts or of gender parity, or from the vote itself through solving
a one-dimensional apportionment, as in the case of political

¶Note that, in the two-dimensional example above, we consider single values and not
lower and upper bounds for the marginals. This is captured in this general model by simply
setting m− = m+ .

parties or lists. On the other hand, the ballot has to be designed
in a way that the entries of the tensor V can be computed. For
example, the Chilean Constitutional Convention election was a
single-vote election where on each district the ballot contained the
full set of candidates of every political party or list. Then, from the
voting data of this election we can construct a three-dimensional
instance where the dimensions are given by the districts, gender,
and political lists. In general, the information may come both
from demographic attributes of the voter, as in the case of the
districts or as would be natural in the case of considering ethnicity
as a dimension, and from the declared preferences, as could be
the case for the list or gender. The latter requires that the ballot is
informative enough on these dimensions, which is straightforward
in open-list systems where people vote for a single candidate, but
may require adaptations in others, such as dividing possible closed
lists among different genders.

2. A Linear Programming Approach

In this section, we introduce an integer linear program inspired
by transportation and matrix-scaling problems. We prove a corre-
spondence between the integer optimal solutions of its linear re-
laxation and the multidimensional proportional apportionments.
Using this characterization, we show the inexistence of propor-
tional apportionments for some instances of the problem and
the computational hardness of deciding the existence of such
apportionments.

A. An Integer Linear Program Inspired by Matrix Scaling. We
follow a related network flow approach introduced by Rote
and Zachariasen (8) for matrix scaling and used by Gaffke and
Pukelsheim (6, 7) to model biproportional apportionments. Our
integer linear program to study the d -dimensional apportionment
problem is constructed as follows: Consider a d -dimensional
instance (N ,V,m−,m+,H ) and a signpost sequence s . For each
e ∈ E (V) and each t ∈ {1, . . . ,H } we have a binary variable y t

e
and its cost in the objective function is given by log(s(t)/Ve) if
s(t)> 0 and zero otherwise:

min
∑

e∈E(V)

∑
t∈{1,...,H}:

s(t)>0

y t
e log

(
s(t)

Ve

)
[6]

s.t.
H∑
t=1

y t
e = xe for every e ∈ E (V), [7]

∑
e∈E(V)

xe = H , [8]

∑
e∈E(V):e�=v

xe ≥m−
v

for every � ∈ {1, . . . , d}
and every v ∈N�,

[9]

∑
e∈E(V):e�=v

xe ≤m+
v

for every � ∈ {1, . . . , d}
and every v ∈N�,

[10]

y1
e ≥ �1− s(1)� for every e ∈ E (V), [11]

y t
e ∈ {0, 1} for every e ∈ E (V)

and every t ∈ {1, . . . ,H }. [12]

The variable xe represents the total number of seats to be allocated
in the apportionment for the tuple e and constraint 7 takes care
of aggregating the seats in these variables. Constraint 8 ensures
to respect the house size and constraints 9 and 10 enforce every
feasible solution to satisfy the marginals. Finally, constraint 11
ensures xe ≥ 1 if s(1) = 0. We remark that this integer linear
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program can be equivalently written by omitting the variables y
at the price of having a nonlinear convex objective.

B. Characterizing Optimal Solutions of the Linear Relaxation.
When d = 2, the above problem is as hard as a transportation
problem in a bipartite network, and in consequence, one can
recover an optimal solution of this problem by solving the linear
relaxation. Furthermore, it can be shown when d = 2 that any
optimal extreme point defines a proportional apportionment,
where multipliers are obtained by computing the exponential
of the corresponding dual solution (6, 8, 12). Therefore, in the
general d -dimensional setting, the first question that we address
is the following: Can we characterize the set of proportional
apportionments in terms of the set of optimal solutions of the
linear relaxation of [6]–[12]? The following result provides a
positive answer to this question:

Theorem 1. Let (N ,V,m−,m+,H ) be an instance of the d-
dimensional apportionment problem, let s be a signpost sequence, and
let x ∈ N

E(V). Then, there exist μ and λ such that (x ,μ,λ) ∈
As(N ,V,m−,m+,H ) if and only if there exists y such that (x , y)
is an optimal solution for the linear relaxation of [6]–[12].

This result is established by studying the optimality conditions
of the linear relaxation of [6]–[12] and has as an immediate
implication that there exists a d -dimensional proportional appor-
tionment if and only if the linear relaxation of [6]–[12] admits an
integer optimal solution. This provides a natural way of studying
the existence of such apportionments for a given instance: solving
the program [6]–[12] and its linear relaxation, and comparing
the objective values. If they coincide, any optimal solution of
the integer linear program defines a proportional apportionment;
otherwise, there is no such apportionment. We use this procedure
in the following subsection to show that there are instances that
do not admit proportional apportionments, and in Section 2.d we
prove that, unlessP= NP, there is no efficient algorithm to decide
whether this is the case for a given instance.

C. Nonexistence of Three-Dimensional Proportional Appor-
tionments. We recall that the existence of d -dimensional
proportional apportionments when d ∈ {1, 2} is completely
understood, and necessary and sufficient conditions are provided
in general (2, 3). In particular, when the apportionment instance
is two-dimensional and V is strictly positive, there is always a
proportional apportionment. This follows from the fact that when
d = 2, the linear relaxation of [6]–[12] is integral, as a conse-
quence of total unimodularity, and the feasibility of this program
is guaranteed by V being strictly positive. For practical purposes,
this is relevant since it guarantees the existence of proportional
apportionments for a fairly natural setting. Then, the following
question arises naturally: Given a d -dimensional instance with
d ≥ 3 and V strictly positive, can we always find a proportional
apportionment? We answer this question in the negative when s
belongs to the relevant family of stationary signpost sequences.

Theorem 2. There exists an instance (N ,V,m−,m+,H ) of the
three-dimensional apportionment problem, with V strictly positive in
each of its entries, such that for every stationary signpost sequence s we
have As(N ,V,m−,m+,H ) = ∅.

This result is proved in a three-dimensional instance where
|N�|= 2 for each � ∈ {1, 2, 3}, and Ve > 0 for every e ∈N1 ×
N2 × N3. This shows that even for very small instances with V
strictly positive, the existence is not guaranteed.

D. Complexity of the Multidimensional Apportionment
Problem. So far, we know that a proportional apportionment

for a given instance is always optimal for the linear relaxation of
[6]–[12], and moreover, it defines an extreme point of its feasible
region. The natural question is how to determine the existence
of an integer extreme point of this optimal region or to ensure
that no such point exists. More formally, consider the following
decision problem: Given an instance (N ,V,m−,m+,H ) of the
d -dimensional apportionment problem and a signpost sequence
s , decide whether As(N ,V,m−,m+,H ) is empty or not.
Within this subsection, we refer to this decision problem as the
(d , s) -proportional apportionment problem. We remark that the
work of Balinski and Demange shows that the (2, s)-proportional
apportionment problem can be solved in polynomial time for
every signpost sequence s (2, 3). Then, the natural question that
arises is the following: What is the complexity of the (d , s)-
proportional apportionment problem when d ≥ 3? The following
is our main result in this line:

Theorem 3. For every signpost sequence s and every d ≥ 3, the (d , s)
-proportional apportionment problem is NP-complete.

We prove this theorem by a hardness reduction from the
perfect matching problem in d -partite hypergraphs. Recall that
G = (P ,F ) is a d-partite hypergraph if the set of vertices P
can be partitioned into d disjoint sets P1, . . . ,Pd , and every
hyperedge f ∈ F intersects each of the parts exactly once; that
is, |f ∩ P�|= 1 for every f ∈ F and every � ∈ {1, . . . , d}. A
2-partite hypergraph is just a bipartite graph. We say that F ′ ⊆ F
is a perfect matching of G if for every v ∈ P we have |{f ∈ F ′ :
v ∈ f }|= 1. The problem of determining whether a d -partite
hypergraph contains a perfect matching is NP-complete even
when d = 3 and |P1|= |P2|= |P3|, which is known as the three-
dimensional matching problem (33).

As a remark, if one considers the case where |N�| is constant
for every � ∈ {1, . . . , d}, there exists a polynomial algorithm
for the (d , s)-proportional apportionment problem: One can
enumerate every possible base defining an extreme point of the
linear relaxation of [6]–[12], and therefore we can check if there
exists an optimal integer extreme point. Theorem 1 guarantees the
correctness of this algorithm.

3. A Linear Program Rounding Algorithm for
Multidimensional Apportionment

In the previous section, we have addressed the multidimensional
apportionment problem from an existence and complexity point
of view. In particular, we have seen that there exist d -dimensional
instances for which it is not possible to simultaneously satisfy
conditions 1–5. Therefore, in this section we address the following
question: Is it possible to compute a vector that satisfies condition
3 and such that the violation in the other conditions is under con-
trol? We provide a positive answer to this question, summarized
in the following theorem:

Theorem 4. Let (N ,V,m−,m+,H ) be an instance of the
d-dimensional apportionment problem and let s be a signpost sequence
such that the linear relaxation of [6]–[12] is feasible. Let u1, . . . , ud
be nonnegative integer values such that

∑d
�=1 1/(u� + 2)≤ 1.

Then, there exists an integral vector X ∈ N
E(V) such that the

following holds:

1) m−
v − u� ≤

∑
e∈E(V):e�=v Xe ≤m+

v + u� for every � ∈
{1, . . . , d} and every v ∈N� .

2) There exist μ > 0 and a vector λ with strictly positive entries
such that
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i) s(Xe)≤ Ve · μ ·
∏d

�=1 λe� ≤ s(Xe + 1) for every e ∈
E (V).

ii) For every � ∈ {1, . . . , d} and every v ∈ N� , if λv > 1,
then |

∑
e∈E(V):e�=v Xe −m−

v | ≤ u�.
iii) For every � ∈ {1, . . . , d} and every v ∈ N�, if λv < 1,

then |
∑

e∈E(V):e�=v Xe −m+
v | ≤ u�.

Furthermore, X can be found in time polynomial in |E (V)|,∑d
�=1 |N�|, and H.
We have seen that there exist instances for the d -dimensional

apportionment problem with d ≥ 3 for which there are no in-
tegral optimal solutions for the linear relaxation of [6]–[12]. In
contrast, we show that it is possible to round an optimal fractional
solution in a way that the obtained integral vector satisfies the
proportionality condition 3 and at the same time the violation in
the marginals condition 1, as well as in the multipliers conditions
4 and 5, is under control. To do so, we study in Section 3.A a
particular discrepancy problem in hypergraphs, inspired by the
work of Beck and Fiala (10) for the discrepancy minimization
problem. We present the algorithm necessary for Theorem 4 and
a brief analysis of this result in Section 3.B. We remark that the
feasibility of the linear relaxation of [6]–[12] is ensured under
mild assumptions, for instance, that each entry of V is strictly
positive.

Note that when d = 2, Theorem 4 is valid for u1 = u2 = 0;
therefore it implies the existence of two-dimensional proportional
apportionments whenever the linear relaxation of [6]–[12] is
feasible, i.e., whenever there exists a vector in R

E(V)
+ respecting

the marginals and preserving the zeros of V , with the additional
condition that Ve > 0 implies a strictly positive entry if s(1) = 0.
This is one of the main results of Balinski and Demange (2), so
Theorem 4 can be seen as a generalization of their existence result
for the case of arbitrary dimension.

A. A Discrepancy Problem in d-Partite Hypergraphs. Consider a
d -partite hypergraph G with vertex partition {P1, . . . ,Pd} and
hyperedges E, and let x ∈ [0, 1]E be such that

∑
e∈δ(v) xe is

integral for every vertex v of G, where δ(v) is the set of hyperedges
containing v. We are also given d nonnegative integer values
u1, . . . , ud and the goal is to round x into an integral vector
in {0, 1}E in a way such that the deviation from

∑
e∈δ(v) xe

on every vertex v ∈ P� is at most u� for each � ∈ {1, . . . , d}.
Naturally, when u1 = · · ·= ud , we fall into the classic discrepancy
minimization approach. In contrast, we are interested in providing
a fine upper bound on the deviation throughout the different parts
of the hypergraph. The following is our main result in this line:

Theorem 5. Let G be a d-partite hypergraph with vertex partition
{P1, . . . ,Pd} and hyperedges E. Let x ∈ [0, 1]E be such that∑

e∈δ(v) xe is integral for every vertex v of G and let u1, . . . , ud be
nonnegative integers such that

∑d
�=1 1/(u� + 2)≤ 1. Then, there

exists z ∈ {0, 1}E such that for every � ∈ {1, . . . , d} and every
v ∈ P� it holds |

∑
e∈δ(v) (ze − xe)| ≤ u�, and ze = xe when xe

is integer. Furthermore, z can be computed in time polynomial in |E |
and

∑d
�=1 |P�|.

Algorithm 1. Iterative rounding algorithm:
Require: A d -partite hypergraph G with vertex partition

{P1, . . . ,Pd} and hyperedges E, a vector x ∈ [0, 1]E , and
nonnegative integer values u1, . . . , ud .

Ensure: Binary vector z ∈ {0, 1}E .

1) Initialize y0 ←− x and let E0 = {e ∈ E : y0
e is fractional}.

2) For each � ∈ {1, . . . , d}, let Q0
� = {v ∈ P� : |δ(v) ∩ E0| ≥

u� + 2}.
3) Let ze = y0

e for every e /∈ E0 and initialize t ← 0.
4) While there exists � ∈ {1, . . . , d} such that Q t

� 
= ∅ do
5) Compute an extreme point y t+1 of K(y t , E t ,Q t).
6) Let E t+1 = {e ∈ E : y t+1

e is fractional}.
7) For each � ∈ {1, . . . , d}, let Q t+1

� = {v ∈ P� : |δ(v)∩
E t+1| ≥ u� + 2}.

8) Let ze = y t+1
e for every e ∈ E t \ E t+1. Update

t ← t + 1.
9) Let T be the value of t that did not satisfy the loop condition.

10) Let ze ∈ {�yT
e �, �yT

e �} for every e ∈ ET .
11) Return z.

We present an iterative rounding algorithm, inspired by the
classic discrepancy minimization result by Beck and Fiala (10)
and formally described in Algorithm 1, that computes a solution
z satisfying the conditions guaranteed by Theorem 5. To present
this procedure, we introduce a simple linear program that is used
during its execution. Given a vector Y ∈ [0, 1]F with F ⊆ E , a
subset of edges E ⊆ F , and a subset of vertices Q� ⊆ P� for each
� ∈ {1, . . . , d}, we consider the following linear program with
variables ye for each e ∈ E :

∑
e∈δ(v)∩E

ye =
∑

e∈δ(v)∩E
Ye for every v ∈

d⋃
�=1

Q�, [13]

0≤ ye ≤ 1 for every e ∈ E . [14]

We denote by K(Y , E ,Q) the polytope of feasible solutions for
this linear program.

Algorithm 1 iteratively solves a linear program in the form of
[13] and [14]. The condition in the loop guarantees that the
algorithm makes progress in fixing at least one new variable into
a binary value. Once the loop condition is not satisfied, the
algorithm rounds up or down the rest of the fractional variables
and its output satisfies the properties guaranteed by Theorem 5.

It is worth mentioning two observations. First, note that the
last step of Algorithm 1 allows to round the remaining fractional
entries as desired. Although the most natural way to minimize de-
viations might be to fix each entry to the nearest integer, this does
not allow an improvement of the worst-case bound. The second
observation is that the bound can be slightly refined for particular
cases, when at least one of the parts in the vertex partition is small.
In particular, the sufficient condition over integers u1, . . . , ud in
Theorem 5 can be replaced by

∑d
�=1 min {�q/(u� + 2)� , |P�|}<

q for every strictly positive integer q . We remark that this is not
a stronger version of Theorem 5, since the inequality over integers
u1, . . . , ud becomes strict in the new condition.

B. Rounding an Optimal Solution of the Linear Relaxation. To
obtain the result stated in Theorem 4, we present our Algorithm 2,
which is based on two key steps. In the first step, we solve the linear
relaxation of [6]–[12] to get a solution. If this solution is integral,
then this is the output of the algorithm. Otherwise, we use this
solution to feed our Algorithm 1 and get an integral vector. Letα be
such that α(e) = {e1, . . . , ed} for each e ∈ E (V). The function
α captures the natural representation of the (ordered) tuples in
E (V) as (unordered) sets. We use this representation to go from
the apportionment setting to the hypergraph representation.

6 of 9 https://doi.org/10.1073/pnas.2109305119 pnas.org
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Algorithm 2. Apportionment rounding algorithm:
Require: A d -dimensional instance (N ,V,m−,m+,H ) and

u1, . . . , ud with
∑d

�=1 1/(u� + 2)≤ 1.

Ensure: An integral vector X ∈ N
E(V).

1) Let (x�, y�) be an optimal solution of the linear relaxation of
[6]–[12] in instance (N ,V,m−,m+,H ).

2) If x� is integral, return X ← x�.
3) If x� is fractional, consider the d -partite hypergraph G with

vertex partition N1, . . . ,Nd and hyperedges α(E (V)). Run
Algorithm 1 over the hypergraph G, the fractional vector w
defined as wα(e) = x�

e − �x�
e � for every e ∈ E (V), and the

values u1, . . . , ud and let z ∈ {0, 1}α(E(V)) be its output.
4) Return Xe = �x�

e �+ zα(e) for every e ∈ E (V).

Theorem 4 allows constructing vectors that satisfy [3] with
fixed maximum marginal deviations in some relevant cases, in
particular, when d is fixed. For example, when d = 3, Algorithm
2 can be run using any vector u in {(0, 1, 4), (0, 2, 2), (1, 1, 1)}.
These vectors and their permutations actually constitute the Pareto
frontier of deviations satisfying the sufficient condition in the
theorem, which is particularly relevant in the case of elections,
since it allows the incorporation of a new feature on top of the
classic party and district dimension. We also remark that when
d ≥ 3, Algorithm 2 can be run using u = (d − 2, . . . , d − 2).
When one dimension has only two options (assume this is the first
dimension), following the logic of the discussion after Theorem 5
one can achieve even better bounds, like u = (0, 1, 3) when d =
3 and u = (0, 2, 3, 4) when d = 4, instead of u = (0, 2, 3, 18),
which is part of the Pareto frontier in the general case.

Finally, we remark that the bounds obtained cannot be
strictly improved, in the sense that if we denote f (u) =∑d

�=1 1/(u� + 2), there is no function g < f such that g(u)≤
1 ensures the existence of a multidimensional proportional
apportionment with deviation at most u� in each dimension
� ∈ {1, . . . , d}. In particular, we prove that in the case d = 3
it is not possible to ensure a maximum deviation given by
u = (0, 0,K ) for any constant K, and we extend this impossibility
to the case of higher dimension by induction. We leave as an open
question whether there are other vectors u with f (u)> 1, for
instance, u = (0, 1, 1), defining deviations that are reachable
for every instance of the problem, i.e., whether our sufficient
condition for u defining feasible deviations is also necessary.

4. Results from the Chilean Constitutional
Convention

In this last section, we test our method for the case of three
dimensions, namely political lists, districts, and genders, using the
downward rounding rule. List marginals are calculated according
to the votes obtained by each list through a single-dimensional
Jefferson/D’Hondt method, and district marginals are predefined
by law, and gender marginals ensure parity, i.e., 50% of the seats
to each gender. We refer to this as the three-proportional method
(TPM) in the following. The testing ground is provided by the
recent election of the Chilean Constitutional Convention (May
15 to 16, 2021), and the basis of the comparison is given by the
Constitutional Convention method (CCM). Chile’s electoral map
is divided into 28 electoral districts with a specified number of
seats to be allocated in each district. In total, 155 seats were to be
allocated, 17 of which were reserved for ethnic minority groups, so
that 138 seats were allocated to the 28 districts. Our comparison

considers only these nonethnic seats.# We also mention that each
voter votes for at most one candidate of the voter’s district.

In the recent Chilean Constitutional Convention election a to-
tal of 70 lists, including over 1,300 candidates, competed for these
138 seats. Three of these lists corresponded to well-established
political alliances. The XP list represented the right-wing parties,
including not only the traditional parties Renovación Nacional
and Unión Demócrata Independiente, but also the newer centrist
Evopoli and the extreme right Partido Republicano. The YB list
represented the center-left parties that have mostly governed Chile
in the last three decades, including the Democracia Cristiana and
the Partido Socialista. The third list is the YQ list and corresponds
to the left-wing parties such as the Partido Comunista and a
number of much newer parties. Additionally, there were two
important politically independent players in the election that
arose as conglomerates encompassing different lists (which did not
compete in any district). These correspond to what we denote by
LP (Lista del Pueblo) and INN (Independientes No Neutrales).||,**

By observing the outcome of both TPM and CCM, we have
that among the 70 lists and 28 independent candidates, only 20
lists and one independent candidate obtain enough votes to be
elected in either system.†† For ease of exposition, when presenting
the results, we omit the votes of the other lists and independent
candidates, none of which obtained more than 0.51% of the votes
and jointly represent less than 10% of them. Note that the results
are not affected by this modification.

In what follows we compare the CCM results with what would
have happened if TPM was in place.‡‡ To this end let us first
describe CCM, which works as follows: In the first step, the seats
of each district are divided between the lists and independent can-
didates according to the single-dimensional Jefferson/D’Hondt
method, using the votes obtained by all the candidates of each
list. Then, the seats assigned to each list are divided between
its sublists (usually political parties) through the same method
and provisionally assigned to the candidates of these sublists
with more individual votes. If at this point the set of elected
candidates achieves gender balance, i.e., the same number of
men and women if the number of seats of the district is even
and at most one more man/woman if it is odd, the seats are
assigned to these candidates. Otherwise, the following procedure
is repeated until the gender balance condition is satisfied: Pick
the provisionally elected candidate of the overrepresented gender
with the lowest number of votes, and assign in the candidate’s
place the provisionally nonelected candidate of the other gender
and the candidate’s same sublist (or list, in case the former is not
possible) with the highest number of individual votes. Observe
that both CCM and TMP implicitly require that there are enough
candidates of each gender.

Political Balance. As a quality measure of an apportionment,
we consider the deviation of the political distribution from the
perfectly fair distribution, a.k.a. fair share in the literature, which

#Ethnic seats were assigned through a parallel election without taking into account political
or geographical considerations, so considering them as a fourth dimension, which would
be a natural further application of multidimensional proportionality, would not be possible
in terms of data availability and would not allow a comparison with the actual results.
||This association is standard as reported, for instance, by https://2021.decidechile.
cl/#/ev/2021. Full election data can be found on the website of the Chilean Servicio Electoral
(SERVEL) https://www.servel.cl/.
**When presenting the results for the remaining lists, we use the election codes.
††This independent candidate is denoted as IND9 because of the number of the district
where he participated.
‡‡Further comparisons of CCM with proportional methods were recently presented in
ref. 34.
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Fig. 1. Political distribution by method and fair share.

assigns to each list the (possibly fractional) number of seats that
corresponds to the proportion of the house that the votes obtained
represent. Fig. 1 shows the proportion obtained by each list with
the 138 seats as a background, to give a graphical idea of the
fair share, and the political distribution of the Constitutional
Convention under both methods.§§ It is observed that TPM
generates a political distribution much closer to the fair share than
the Constitutional Convention method, with a smaller overrepre-
sentation of the most voted list and an assignment of seats to the
14 top-voted lists. It is particularly relevant to remark that CCM
does not assign any seat to list XA, which is the sixth most voted
list with almost 4% of the votes, while TPM allocates five seats to
this list.

The notion of closeness or dispersion with respect to the fair
share can be formalized through the Euclidean distance between
an apportionment and the fair share or, in other words, the SD
of an apportionment with respect to the fair share. This notion is
easily extended to the apportionment of a single district as well,
comparing the political distribution of the seats assigned in the
district with the fair distribution according to the votes.¶¶ Fig. 2
shows the SD of the apportionments obtained with each method
by district. (The data used for Fig. 2 are in SI Appendix, Table S4.)

Naturally, CCM is locally closer to the fair share than TPM,
which is essentially a property of the design since CCM achieves
local proportionality. However, when summing up the results by

§§The data used for Fig. 1 are in SI Appendix, Table S1.
¶¶District data can be found in SI Appendix, Tables S2 and S3.

district, the local errors generated by CCM start to add up and
the distortion with respect to the fair share increases. On the other
hand, TPM is designed to achieve global proportionality so that
the national results are much closer to the fair share of the vote.
In fact, the SD of the apportionment obtained with TPM with
respect to the fair share is 2.49, and with CCM this value is 6.44.
There is, therefore, a trade-off between local and global political
representation.

Robustness. Another criterion we use to compare CCM and
TPM is their robustness to small perturbations in the votes. To
evaluate this aspect, we conduct n = 1, 000 simulations, and in
each one we multiply the votes obtained by each candidate by a
normally distributed value with mean 1 and SD 0.05. We then
compute the distribution of the number of seats transferred from
one list to any other on each simulation starting from the original
apportionment. Denoting the seats obtained by each list � ∈ L
in the original apportionment as y�, the seats obtained by each
list � ∈ L in simulation i ∈ {1, . . . ,n} as y i

� , and the variable of
interest as T i , this variable is given by

T
i
=

1

2

∑
�∈L

|y� − y
i
�|.

##

Fig. 3 plots the distribution of this variable under each method.
Since the three-proportional method assigns to each list a num-
ber of seats determined by its total votes, instead of the votes

##Note that since seat transfers are counted twice in the summation, we divide the
expression by 2.

Fig. 2. SD of political distribution with respect to the fair share by method and district.
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Fig. 3. Distribution of the seats transferred between lists under perturba-
tions of the votes.

by district, this method generates a more robust result in the
face of changes in the votes. Indeed, the average number of seats
transferred under this method is 0.68, and this value increases
to 2.37 under the Constitutional Convention method. When
evaluating robustness locally, the number of seats transferred from
one list to another, district by district, as a result of the random
perturbations is (again naturally) smaller in the case of CCM, with
an average of 3.28 seats against 5.36 in the case of TPM.

Gender Balance. CCM leads to a house composed of 70 men
and 68 women, while an absolute gender balance of 69 men
and 69 women is achieved by TPM. It is important to note that
CCM guarantees the same number of elected men and women in
districts with an even number of seats and a difference of at most
one for those with an odd amount of seats, thus performing better
in a local sense, with an average difference of 0.5 seats between
genders against an average difference of 1.79 in the case of TPM.
However, these deviations might add up and could lead, in the
worst case, to a difference of 14 seats between men and women
with the district configuration used for this election. On the other

hand, global gender balance is guaranteed by the definition of
TPM whenever deviations are not necessary, which is the case both
for the actual election results and for all the simulations described
in the previous paragraph. The trade-off between local and global
representation arises again in the case of gender.

The Value of a Vote. As a final observation, we remark that
when using TPM each vote is equally valuable in favor of the
chosen list, because its number of seats, as was pointed out,
depends only on its total number of votes. In the Constitutional
Convention election, comparing the number of seats assigned
to each district and the people who voted in each of them, the
votes of some people were 5.44 times more valuable than the
votes of people living in a different district (this ratio becomes
greater than 1,000 when considering the seats reserved to ethnic
groups). Incorporating geographic division, gender, and possibly
other criteria as additional dimensions instead of making separate
elections for each clearly allows getting closer to the well-known
principle of one person, one vote.

In conclusion, our experiments show that TPM provides a
well-balanced, near-to-proportional global representation in all
relevant dimensions, in addition to ensuring robustness and equal
value of each vote in terms of the global apportionment. The
natural price of this is some imprecision at the local level when
comparing with local methods. Therefore, applications of multidi-
mensional proportionality may be of special interest for elections
of representative bodies whose main impact is at the national
level.

Data Availability. Previously published data were used for this work
(https://www.servelelecciones.cl/).

ACKNOWLEDGMENTS. This work was partially funded by Agencia Nacional de
Investigación y Desarrollo (Chile) through Grants ACT210005 and FONDECYT
11190789 and Master of Science fellowship 2020-22200354. We also gratefully
acknowledge support from the Center for Mathematical Modeling (ACE210010
and FB210005) and from the Institute for Research in Market Imperfections and
Public Policy (ICS13 002). A preliminary version of this work was presented at
the 22nd Association for Computing Machinery Conference on Economics and
Computation 2021.

1. M. L. Balinski, H. P. Young, The Webster method of apportionment. Proc. Natl. Acad. Sci. U.S.A. 77,
1–4 (1980).

2. M. Balinski, G. Demange, An axiomatic approach to proportionality between matrices. Math. Oper.
Res. 14, 700–719 (1989).

3. M. Balinski, G. Demange, Algorithms for proportional matrices in reals and integers. Math. Program.
45, 193–210 (1989).

4. J. Lang, P. Skowron, Multi-attribute proportional representation. Artif. Intell. 263, 74–106 (2018).
5. G. Demange, On allocating seats to parties and districts: Apportionments. Int. Game Theory Rev. 15,

1340014 (2013).
6. N. Gaffke, F. Pukelsheim, Divisor methods for proportional representation systems: An optimization

approach to vector and matrix apportionment problems. Math. Soc. Sci. 56, 166–184 (2008).
7. N. Gaffke, F. Pukelsheim, Vector and matrix apportionment problems and separable convex integer

optimization. Math. Methods Oper. Res. 67, 133–159 (2008).
8. G. Rote, M. Zachariasen, “Matrix scaling by network flow” in Proceedings of the 18th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), N. Bansal, K.R. Pruhs, C. Stein, Eds. (Association
for Computing Machinery, 2007), pp. 848–854.

9. U. G. Rothblum, H. Schneider, Scalings of matrices which have prespecified row sums and column
sums via optimization. Linear Algebr. Appl. 114, 737–764 (1989).

10. J. Beck, T. Fiala, Integer-making theorems. Discrete Appl. Math. 3, 1–8 (1981).
11. M. Balinski, H. P. Young, Fair Representation: Meeting the Ideal of One Man, One Vote (Brookings

Institution Press, 2010).
12. F. Pukelsheim, Proportional Representation (Springer, 2017).
13. M. Balinski, R. Laraki, A theory of measuring, electing, and ranking. Proc. Natl. Acad. Sci. U.S.A. 104,

8720–8725 (2007).
14. M. Balinski, R. Laraki, Majority Judgment: Measuring, Ranking, and Electing (MIT Press, 2011).
15. M. Balinski, Fair majority voting (or how to eliminate gerrymandering). Am. Math. Mon. 115, 97–113

(2008).
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